New study of the Arctic Ocean finds alarming increase in acidity

Typography
If you ever had a marine aquarium (or a swimming pool) you know that it is very important to keep the level of acidity (ph) within a narrow range for optimum results. In the case of the pool, to minimize corrosion of the metal parts in a heater and to reduce damage to the pool lining or paint. In the case of the aquarium, the ph is directly related to the health of coral and fish. The ocean is no different. Acidity is an important parameter that relates to many other parameters including the health of marine animals and the rates at which corals and rocks grow or are dissolved. Globally, oceans are getting more acidic from CO2 emissions. Acidification of the Arctic Ocean is occurring faster than projected according to new findings published in the journal PLOS ONE. The increase in rate is being blamed on rapidly melting sea ice, a process that may have important consequences for health of the Arctic ecosystem. Ocean acidification is the process by which pH levels of seawater decrease due to greater amounts of carbon dioxide being absorbed by the oceans from the atmosphere. Currently oceans absorb about one-fourth of the greenhouse gas. Lower pH levels make water more acidic and lab studies have shown that more acidic water decrease calcification rates in many calcifying organisms, reducing their ability to build shells or skeletons. These changes, in species ranging from corals to shrimp, have the potential to impact species up and down the food web. The team of federal and university researchers found that the decline of sea ice in the Arctic summer has important consequences for the surface layer of the Arctic Ocean. As sea ice cover recedes to record lows, as it did late in the summer of 2012, the seawater beneath is exposed to carbon dioxide, which is the main driver of ocean acidification.

If you ever had a marine aquarium (or a swimming pool) you know that it is very important to keep the level of acidity (ph) within a narrow range for optimum results. In the case of the pool, to minimize corrosion of the metal parts in a heater and to reduce damage to the pool lining or paint. In the case of the aquarium, the ph is directly related to the health of coral and fish. The ocean is no different. Acidity is an important parameter that relates to many other parameters including the health of marine animals and the rates at which corals and rocks grow or are dissolved. Globally, oceans are getting more acidic from CO2 emissions.

!ADVERTISEMENT!

Acidification of the Arctic Ocean is occurring faster than projected according to new findings published in the journal PLOS ONE. The increase in rate is being blamed on rapidly melting sea ice, a process that may have important consequences for health of the Arctic ecosystem.

Ocean acidification is the process by which pH levels of seawater decrease due to greater amounts of carbon dioxide being absorbed by the oceans from the atmosphere. Currently oceans absorb about one-fourth of the greenhouse gas. Lower pH levels make water more acidic and lab studies have shown that more acidic water decrease calcification rates in many calcifying organisms, reducing their ability to build shells or skeletons. These changes, in species ranging from corals to shrimp, have the potential to impact species up and down the food web.

The team of federal and university researchers found that the decline of sea ice in the Arctic summer has important consequences for the surface layer of the Arctic Ocean. As sea ice cover recedes to record lows, as it did late in the summer of 2012, the seawater beneath is exposed to carbon dioxide, which is the main driver of ocean acidification.
In addition, the freshwater melted from sea ice dilutes the seawater, lowering pH levels and reducing the concentrations of calcium and carbonate, which are the constituents, or building blocks, of the mineral aragonite. Aragonite and other carbonate minerals make up the hard part of many marine micro-organisms’ skeletons and shells. The lowering of calcium and carbonate concentrations may impact the growth of organisms that many species rely on for food.

The new research shows that acidification in surface waters of the Arctic Ocean is rapidly expanding into areas that were previously isolated from contact with the atmosphere due to the former widespread ice cover.

"A remarkable 20 percent of the Canadian Basin has become more corrosive to carbonate minerals in an unprecedented short period of time. Nowhere on Earth have we documented such large scale, rapid ocean acidification" according to lead researcher and ocean acidification project chief, U.S. Geological Survey oceanographer Lisa Robbins.

Globally, Earth's ocean surface is becoming acidified due to absorption of man-made carbon dioxide. Ocean acidification models show that with increasing atmospheric carbon dioxide, the Arctic Ocean will have crucially low concentrations of dissolved carbonate minerals, such as aragonite, in the next decade.

Atlantic Puffin photo via Shutterstock.

Read more at USGS.