A Major Source of Air Pollution: Farms

Typography

A new study says that emissions from farms outweigh all other human sources of fine-particulate air pollution in much of the United States, Europe, Russia and China. The culprit: fumes from nitrogen-rich fertilizers and animal waste that combine in the air with industrial emissions to form solid particles—a huge source of disease and death. The good news: if industrial emissions decline in coming decades, as most projections say, fine-particle pollution will go down even if fertilizer use doubles as expected. The study appears this week in the journal Geophysical Research Letters.

Agricultural air pollution comes mainly in the form of ammonia, which enters the air as a gas from heavily fertilized fields and livestock waste. It then combines with pollutants from combustion—mainly nitrogen oxides and sulfates from vehicles, power plants and industrial processes—to create tiny solid particles, or aerosols, no more than 2.5 micrometers across, about 1/30 the width of a human hair. The particles can penetrate deep into lungs, causing heart or pulmonary disease; a 2015 study in the journal Nature estimates they cause at least 3.3 million deaths each year globally.

A new study says that emissions from farms outweigh all other human sources of fine-particulate air pollution in much of the United States, Europe, Russia and China. The culprit: fumes from nitrogen-rich fertilizers and animal waste that combine in the air with industrial emissions to form solid particles—a huge source of disease and death. The good news: if industrial emissions decline in coming decades, as most projections say, fine-particle pollution will go down even if fertilizer use doubles as expected. The study appears this week in the journal Geophysical Research Letters.

Agricultural air pollution comes mainly in the form of ammonia, which enters the air as a gas from heavily fertilized fields and livestock waste. It then combines with pollutants from combustion—mainly nitrogen oxides and sulfates from vehicles, power plants and industrial processes—to create tiny solid particles, or aerosols, no more than 2.5 micrometers across, about 1/30 the width of a human hair. The particles can penetrate deep into lungs, causing heart or pulmonary disease; a 2015 study in the journal Nature estimates they cause at least 3.3 million deaths each year globally.

The new study is not the first to flag agricultural pollution; many regional studies, especially in the United States, have shown it as a prime source of fine-particulate precursors. However, the study is perhaps the first to look at the phenomenon worldwide, and to project future trends. It shows that more than half the aerosol ingredients in much of the eastern and central United States come from farming. In Europe and China, the effect is even stronger. The aerosols form mainly downwind of farming areas, in densely populated places where farm emissions combine through a series of chemical reactions with those of cars, trucks and other sources.

“This is not against fertilizer—there are many places, including Africa, that need more of it,” said lead author Susanne Bauer, an atmospheric scientist at Columbia University’s Center for Climate Systems Research and the NASA Goddard Institute for Space Studies. “We expect population to go up, and to produce more food, we will need more fertilizer.”

Continue reading at The Earth Institute at Columbia University.

Image credit: Courtesy U.S. Bureau of Labor Statistics