Stanford researchers capture Central Asia's 'de-greening' over millions of years into a modern-day desert

Typography

A new study chronicles how central Asia dried out over the last 23 million years into one of the most arid regions on the planet. The findings illustrate the dramatic climatic shifts wrought by the ponderous rise of new mountain ranges over geologic time.

Researchers have long cited the uplift of the Tibetan Plateau and the Himalayan Mountains around 50 million years ago for blocking rain clouds’ entry into central Asia from the south, killing off much of the region’s plant life.

A new study chronicles how central Asia dried out over the last 23 million years into one of the most arid regions on the planet. The findings illustrate the dramatic climatic shifts wrought by the ponderous rise of new mountain ranges over geologic time.

Researchers have long cited the uplift of the Tibetan Plateau and the Himalayan Mountains around 50 million years ago for blocking rain clouds’ entry into central Asia from the south, killing off much of the region’s plant life.

The new study, published online in the journal Geology, paints a more nuanced picture of Central Asia’s desertification. It suggests that the relatively recent rise of lesser-known mountain ranges, such as the Tian Shan and the Altai, further sealed off moisture from the west and north. As a result, great stretches of what we now consider western China, southwestern Mongolia and eastern Tajikistan became barren earth or laced by sand dunes.

Continue reading at Stanford University

Photo courtesy of Jeremy Caves