Tropical Rainfall Patterns

Typography
One often ignored consequence of global climate change is that the Northern Hemisphere is becoming warmer than the Southern Hemisphere, which could significantly alter tropical precipitation patterns, according to a new study by climatologists from the University of California, Berkeley, and the University of Washington. What this means, over time, is that rain that falls in one place may shift to another place. What is desert now may become green while other lands languish.

One often ignored consequence of global climate change is that the Northern Hemisphere is becoming warmer than the Southern Hemisphere, which could significantly alter tropical precipitation patterns, according to a new study by climatologists from the University of California, Berkeley, and the University of Washington. What this means, over time, is that rain that falls in one place may shift to another place. What is desert now may become green while other lands languish.

!ADVERTISEMENT!

Such a shift could increase or decrease seasonal rainfall in areas such as the Amazon, sub-Saharan Africa or East Asia, leaving some areas wetter and some drier than today.

"A key finding is a tendency to shift tropical rainfall northward, which could mean increases in monsoon weather systems in Asia or shifts of the wet season from south to north in Africa and South America," said UC Berkeley graduate student Andrew R. Friedman, who led the analysis.

"Tropical rainfall likes the warmer hemisphere," summed up John Chiang, UC Berkeley associate professor of geography and a member of the Berkeley Atmospheric Sciences Center. "As a result, tropical rainfall cares a lot about the temperature difference between the two hemispheres."

Chiang and Friedman, along with University of Washington colleagues Dargan M. W. Frierson and graduate student Yen-Ting Hwang, report their findings in a paper now accepted by the Journal of Climate, a publication of the American Meteorological Society.

Generally, rainfall patterns fall into bands at specific latitudes, such as the Intertropical Convergence Zone. The researchers say that a warmer northern hemisphere causes atmospheric overturning to weaken in the north and strengthen in the south, shifting rain bands northward.

The Intertropical Convergence Zone (ITCZ), known by sailors as the doldrums, is the area encircling the earth near the equator where the northeast and southeast trade winds come together.

When it lies near the equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonal circulation, it is sometimes referred to as a monsoon trough, a usage more common in Australia and parts of Asia. In the seamen's speech the zone is referred as the doldrums because of its erratic weather patterns with stagnant calms and violent thunderstorms.

Variation in the location of the intertropical convergence zone drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the intertropical convergence zone can result in severe droughts or flooding in nearby area.

The regions most affected by this shift are likely to be on the bands’ north and south edges, Frierson said.

"It really is these borderline regions that will be most affected, which, not coincidentally, are some of the most vulnerable places: areas like the Sahel where rainfall is variable from year to year and the people tend to be dependent on subsistence agriculture," said Frierson, associate professor of atmospheric sciences. "We are making major climate changes to the planet and to expect that rainfall patterns would stay the same is very naïve."

Using more than 100 years of data and model simulations, they compared the yearly average temperature difference between the Northern and Southern hemispheres with rainfall throughout the 20th century and noticed that abrupt changes coincided with rainfall disruptions in the equatorial tropics.

The largest was a drop of about one-quarter degree Celsius (about one-half degree Fahrenheit) in the temperature difference in the late 1960s, which coincided with a 30-year drought in the African Sahel that caused famines and increased desertification across North Africa, as well as decreases in the monsoons in East Asia and India.

"If what we see in the last century is true, even small changes in the temperature difference between the Northern and Southern hemispheres could cause measureable changes in tropical rainfall," Chiang said.

Even if humans begin to lower their greenhouse gas emissions, the climate models predict about a 1 degree Celsius (2° F) increase in this hemispherical difference by 2099.

"We think this simple index, interhemispheric temperature, is very relevant on a hemispheric and perhaps regional level. It provides a different perspective on climate change and also highlights the effect of aerosols on weather,"

For further information see Tropic Rains and Article.

Tropic Zone  image via Wikipedia.