From: Roger Greenway, ENN
Published May 3, 2013 06:16 AM

The Human Brain Rivals Google Maps

Have you ever wondered how you remember how to get to places you have only gone to once? How does the brain generate a map of your route that allows you to retrace your steps another time, perhaps weeks or months in the future?

ADVERTISEMENT

Using virtual reality, neurophysicists determine how environmental stimuli and brain rhythms generate our neuronal maps of the world. Using virtual reality, neurophysicists determine how environmental stimuli and brain rhythms generate our neuronal maps of the world.
Leaving the house in the morning may seem simple, but with every move we make, our brains are working feverishly to create maps of the outside world that allow us to navigate and to remember where we are.

Take one step out the front door, and an individual brain cell fires. Pass by your rose bush on the way to the car, another specific neuron fires. And so it goes. Ultimately, the brain constructs its own pinpoint geographical chart that is far more precise than anything you'd find on Google Maps.

But just how neurons make these maps of space has fascinated scientists for decades. It is known that several types of stimuli influence the creation of neuronal maps, including visual cues in the physical environment — that rose bush, for instance — the body's innate knowledge of how fast it is moving, and other inputs, like smell. Yet the mechanisms by which groups of neurons combine these various stimuli to make precise maps are unknown.

To solve this puzzle, UCLA neurophysicists built a virtual-reality environment that allowed them to manipulate these cues while measuring the activity of map-making neurons in rats. Surprisingly, they found that when certain cues were removed, the neurons that typically fire each time a rat passes a fixed point or landmark in the real world instead began to compute the rat's relative position, firing, for example, each time the rodent walked five paces forward, then five paces back, regardless of landmarks. And many other mapping cells shut down altogether, suggesting that different sensory cues strongly influence these neurons.

Finally, the researchers found that in this virtual world, the rhythmic firing of neurons that normally speeds up or slows down depending on the rate at which an animal moves, was profoundly altered. The rats' brains maintained a single, steady rhythmic pattern.

The findings, reported in the May 2 online edition of the journal Science, provide further clues to how the brain learns and makes memories.

Rendering of brain via Shutterstock.

Read more at UCLA.

Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network