Are the US drinking water standards outdated?

Typography

Changes in drinking water quality in the 21st Century are coming from a myriad of circumstances, and not all are for the best. Top contenders for why water-drinking quality might become suspect to the average consumer include California's drought conditions, the technology of fracking, and the nationwide aging infrastructure of rusty, degrading pipes.

Citing these and other relatively recent scenarios, Andrea Dietrich, professor of civil and environmental engineering at Virginia Tech, and her colleague Gary A. Burlingame of the Philadelphia Water Department, are calling for a critical review and rethinking of the U.S. Environmental Protection Agency's (EPA) secondary standards for maintaining consumers' confidence in tap water as well as in its sensory quality.

Changes in drinking water quality in the 21st Century are coming from a myriad of circumstances, and not all are for the best. Top contenders for why water-drinking quality might become suspect to the average consumer include California's drought conditions, the technology of fracking, and the nationwide aging infrastructure of rusty, degrading pipes.

Citing these and other relatively recent scenarios, Andrea Dietrich, professor of civil and environmental engineering at Virginia Tech, and her colleague Gary A. Burlingame of the Philadelphia Water Department, are calling for a critical review and rethinking of the U.S. Environmental Protection Agency's (EPA) secondary standards for maintaining consumers' confidence in tap water as well as in its sensory quality.

Most of the "current secondary maximum contaminant levels" implemented by the EPA are more than 50 years old, they wrote in a published journal paper. During these past five decades, Dietrich and Burlingame point out that environmental water availability and treatment practices have changed, advances have occurred in sensory science, and consumer perceptions, attitudes and health expectations toward drinking water have transformed.

Dietrich and Burlingame published their paper in American Chemical Society's Environmental Science and Technology, the top environmental engineering journal, in December of 2014.

These secondary contaminants in drinking water include: aluminum, chloride, color, copper, corrosivity, fluoride, foaming agents, iron, manganese, odor, pH, silver, sulfate, total dissolved solids, and zinc.

Of these contaminants, Dietrich and Burlingame stated that recent advances in sensory and health sciences indicate that the EPA standards for chloride, copper, iron, and manganese are "too high" to minimize sensory effects. Furthermore, the standards for corrosivity and foaming agents "may be outdated." Corrosivity, according to the EPA, is the quality of being corrosive, or gradually releasing structural components of the materials by chemical reaction with the environment. Corrosion of distribution system pipes can reduce water flow.

Also, the standard for odor "requires rethinking as the test does not correlate with consumer complaints," they argued.

As an example of consumers' anxieties about smell and significance of aesthetic guidelines, Dietrich pointed to a major chemical spill of an odorous 4-methylcyclohexanemethanol in West Virginia's Elk River a year ago. The persistence of odors in the tap waters of more than 300,000 West Virginians "made residents fearful" even after officials had lifted the "do not drink the water" ban.

Continue reading at EurekAlert!

Drinking water image via Shutterstock.