Prehistoric mega-lake sediment offers key insight into how inland regions responded to "super-greenhouse" event

Typography

Sediment found at the site of one of the largest lakes in Earth’s history could provide a fascinating new insight into how inland regions responded to global climate change millions of years ago.

A pioneering new study, carried out by a team of British-based researchers, has analysed sediments from the site of the vast lake which formed in the Sichuan Basin, in China, around 183 million years ago in the Jurassic period.

Sediment found at the site of one of the largest lakes in Earth’s history could provide a fascinating new insight into how inland regions responded to global climate change millions of years ago.

A pioneering new study, carried out by a team of British-based researchers, has analysed sediments from the site of the vast lake which formed in the Sichuan Basin, in China, around 183 million years ago in the Jurassic period.

The study showed that an accelerated hydrological cycle operating in this region at the time brought an increased supply of nutrients to the lake, which in turn encouraged biological productivity. As a result, the team were able to find an abundance of dark-coloured, organic-rich sediments deposited in the area.

These organic-rich sediments are similar to those found deposited in many of the world’s oceans at the same time, suggesting that both systems drew vast quantities of carbon dioxide from the atmosphere, consequently aiding global recovery from climate change, but at the same time losing the dissolved oxygen crucial to larger aquatic organisms.

Continue reading at University of Exeter

Photo: Satellite photo of the Sichuan Basin — in Sichuan Province, north-central China.

Photo Credit: NASA