Model predicts performance of glucose-responsive insulin

Typography

People with Type 1 diabetes must check their blood glucose several times a day and inject themselves with insulin to keep their blood sugar levels within a healthy range. A better alternative, long sought by diabetes researchers, would be insulin that is engineered to linger in the bloodstream, becoming active only when needed, such as right after a meal.

People with Type 1 diabetes must check their blood glucose several times a day and inject themselves with insulin to keep their blood sugar levels within a healthy range. A better alternative, long sought by diabetes researchers, would be insulin that is engineered to linger in the bloodstream, becoming active only when needed, such as right after a meal.

One obstacle to developing this kind of “glucose-responsive insulin” is that it is difficult to know how these drugs will behave without testing them in animals. MIT researchers have now created a computer model that should streamline the development process: Their new model can predict how glucose-responsive insulin (GRI) will affect patients’ blood sugar, based on chemical traits such as how quickly the GRI becomes activated in the presence of glucose.

“The concept of GRI has been a longstanding goal of the diabetes field,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “If done correctly, you could make it so that diabetics could take an occasional dose and never have to worry about their blood sugar.”

The new model allowed the researchers to identify several strong GRI candidates, which they now plan to test in animals.

Continue reading at Massachusetts Institute of Technology (MIT)

Image Credit:  Massachusetts Institute of Technology