Sussex Physicists Have Breakthrough on Brittle Smartphone Screens

Typography

Scientists at the University of Sussex may have found a solution to the long-standing problem of brittle smartphone screens.

Scientists at the University of Sussex may have found a solution to the long-standing problem of brittle smartphone screens.

Professor Alan Dalton and his team have developed a new way to make smartphone touch screens that are cheaper, less brittle, and more environmentally friendly. On top of that, the new approach also promises devices that use less energy, are more responsive, and do not tarnish in the air.

The problem has been that indium tin oxide, which is currently used to make smartphone screens, is brittle and expensive. The primary constituent, indium, is also a rare metal and is ecologically damaging to extract. Silver, which has been shown to be the best alternative to indium tin oxide, is also expensive. The breakthrough from physicists at the University of Sussex has been to combine silver nanowires with graphene – a two-dimensional carbon material. The new hybrid material matches the performance of the existing technologies at a fraction of the cost.

In particular, the way in which these materials are assembled is new. Graphene is a single layer of atoms, and can float on water. By creating a stamp – a bit like a potato stamp a child might make – the scientists can pick up the layer of atoms and lay it on top of the silver nanowire film in a pattern. The stamp itself is made from poly(dimethyl siloxane) - the same kind of silicone rubber used in kitchen utensils and medical implants.

Read more at University of Sussex

Image: Dr Matthew Large, University of Sussex, flexes a screen made from acrylic plastic coated in silver nanowires and grapheme to illustrate the kind of touch screens that can potentially be produced using the new approach. (Credit: Dr Matthew Large)