Ecological consequences of amphetamine pollution in urban streams

Typography

Pharmaceutical and illicit drugs are present in streams in Baltimore, Maryland. At some sites, amphetamine concentrations are high enough to alter the base of the aquatic food web. So reports a new study released today in the journal Environmental Science & Technology, which is one of the first to explore the ecological consequences of stimulant pollution in urban streams.

Lead author Sylvia S. Lee conducted the work as a postdoctoral researcher at the Cary Institute of Ecosystem Studies. Lee, now with the Environmental Protection Agency, comments, "Around the world, treated and untreated wastewater entering surface waters contains pharmaceuticals and illicit drugs that originate from human consumption and excretion, manufacturing processes, or improper disposal. We were interested in revealing how amphetamine exposure influences the small plants and animals that play a large role in regulating the health of streams."

Pharmaceutical and illicit drugs are present in streams in Baltimore, Maryland. At some sites, amphetamine concentrations are high enough to alter the base of the aquatic food web. So reports a new study released today in the journal Environmental Science & Technology, which is one of the first to explore the ecological consequences of stimulant pollution in urban streams.

Lead author Sylvia S. Lee conducted the work as a postdoctoral researcher at the Cary Institute of Ecosystem Studies. Lee, now with the Environmental Protection Agency, comments, "Around the world, treated and untreated wastewater entering surface waters contains pharmaceuticals and illicit drugs that originate from human consumption and excretion, manufacturing processes, or improper disposal. We were interested in revealing how amphetamine exposure influences the small plants and animals that play a large role in regulating the health of streams."

Lee and her collaborators measured concentrations of pharmaceutical and illicit drugs at six stream sites along an urban-to-rural gradient in Baltimore, Maryland. Numerous drugs, including amphetamine, were detected in stream sites, with illicit drug levels highest in the most urban streams. Sampling was performed in 2013 and 2014. Suburban and urban fieldwork focused on the Gwynns Falls watershed, which is part of the Baltimore Ecosystem Study Long-Term Ecological Research program. The two rural streams were located in Oregon Ridge watershed, the closest forested region.

Continue reading at EurekAlert!

Image: Biofilms are complex communities composed of algae, fungi, and bacteria all living and working together. In streams, biofilms contribute to water quality by recycling nutrients and organic matter. They are also a major food source for invertebrates, which, in turn, feed larger animals like fish.

Credits: Sylvia Lee via Phys.org