From: Andy Soos, ENN
Published July 22, 2011 01:57 PM

Ambient Energy

Ambient energy sources are all around us in a busy technological world. These sources are small and often imperceptible such as as radio and television transmitters, cell phone networks and satellite communications systems. Researchers have discovered a way to capture and harness energy transmitted by such sources as radio and television transmitters, cell phone networks and satellite communications systems. By scavenging this ambient energy from the air around us, the technique could provide a new way to power networks of wireless sensors, microprocessors and communications chips. Tentzeris and his team are using inkjet printers to combine sensors, antennas and energy-scavenging capabilities on paper or flexible polymers. The resulting self-powered wireless sensors could be used for chemical, biological, heat and stress sensing for defense and industry; radio-frequency identification (RFID) tagging for manufacturing and shipping, and monitoring tasks in many fields including communications and power usage.

ADVERTISEMENT

Communications devices transmit energy in many different frequency ranges, or bands. The team's scavenging devices can capture this energy, convert it from AC to DC, and then store it in capacitors and batteries. The scavenging technology can take advantage presently of frequencies from FM radio to radar, a range spanning 100 megahertz (MHz) to 15 gigahertz (GHz) or higher.  In a sense this is broadcast power though that was not the original intent.

Scavenging experiments utilizing TV bands have already yielded power amounting to hundreds of microwatts, and multi-band systems are expected to generate one milliwatt or more. That amount of power is enough to operate many small electronic devices, including a variety of sensors and microprocessors.

By combining energy-scavenging technology with super-capacitors and cycled operation, the Georgia Tech team expects to power devices requiring above 50 milliwatts. In this approach, energy builds up in a battery-like super-capacitor and is utilized when the required power level is reached.

The scavenging device could be used by itself or in tandem with other generating technologies. For example, scavenged energy could assist a solar element to charge a battery during the day. At night, when solar cells don't provide power, scavenged energy would continue to increase the battery charge or would prevent discharging.

Utilizing ambient electromagnetic energy could also provide a form of system backup. If a battery or a solar-collector/battery package failed completely, scavenged energy could allow the system to transmit a wireless distress signal while also potentially maintaining critical functionalities.

To print electrical components and circuits, the Georgia Tech researchers use a standard-materials inkjet printer. However, they add what Tentzeris calls "a unique in-house recipe" containing silver nanoparticles and/or other nanoparticles in an emulsion. This approach enables the team to print not only RF components and circuits, but also novel sensing devices based on such nanomaterials as carbon nanotubes.

The researchers believe that self-powered, wireless paper-based sensors will soon be widely available.  

For further information:  http://www.gatech.edu/newsroom/release.html?nid=68714

Photo:  Credit: Georgia Tech Photo: Gary Meek

Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network