From: Andy Soos ENN
Published October 27, 2011 03:23 PM

The Impact of a Meteorite Storm

Meteorites have been hitting the Earth since the beginning of time. Yet much is not known of what happens when they hit. Seeking to better understand the level of death and destruction that would result from a large meteorite striking the Earth, Princeton University researchers have developed a new model that can not only more accurately simulate the seismic fallout of such an impact, but also help reveal new information about the surface and interior of planets based on past collisions.

ADVERTISEMENT

Millions of meteors occur in the Earth's atmosphere every day. Most meteoroids that cause meteors are about the size of a pebble. They become visible between about 40 and 75 miles above the Earth. They disintegrate at altitudes of 30 to 60 miles. Meteors have roughly a fifty percent chance of a daylight (or near daylight) collision with the Earth. Most meteors are, however, observed at night as low light conditions allow fainter meteors to be observed.

The really big ones are the ones that are most fascinating such as the one that may have ended the dinosaurs.

Princeton researchers created the first model to take into account Earth's elliptical shape, surface features and ocean depths in simulations of how seismic waves generated by a meteorite collision would spread across and within the planet. The researchers report in the October issue of Geophysical Journal International.

The researchers -- based in the laboratory of Jeroen Tromp, the Blair Professor of Geology in Princeton's Department of Geosciences -- simulated the meteorite strike that caused the Chicxulub crater in Mexico, an impact 2 million times more powerful than a hydrogen bomb. The team's rendering of the planet showed that the impact's seismic waves would be scattered and unfocused, resulting in less severe ground displacement, tsunamis, and seismic and volcanic activity than previously theorized.

The Princeton simulations also could help researchers gain insight into the unseen surface and interior details of other planets and moons, the authors reported. The simulations can pinpoint the strength of the meteorite's antipodal focus -- the area of the globe opposite of the crater where the energy from the initial collision comes together like a second, smaller impact.  

Lead author Matthias Meschede of the University of Munich developed the model at Princeton through the University's Visiting Student Research Collaborators program with co-authors Conor Myhrvold, who earned his bachelor's degree from Princeton in 2011, and Tromp, who also is director of Princeton's Institute for Computational Science and Engineering and a professor of applied and computational mathematics. Meschede describes the findings as follows:

"We have developed the first model to account for how Earth's surface features and shape would influence the spread of seismic activity following a meteorite impact. For the Earth, these calculations are usually made using a smooth, perfect sphere model, but we found that the surface features of a planet or a moon have a huge effect on the aftershock a large meteorite will have, so it's extremely important to take those into account.

"After a meteorite impact, seismic waves travel outward across the Earth's surface like after a stone is thrown in water. These waves travel all the way around the globe and meet in a single point on the opposite side from the impact known as the antipode.   

"We began by asking whether the meteorite that hit the Earth near Chicxulub could be connected to other late-Cretaceous mass-extinction theories. For example, there's a prominent theory that the meteorite triggered huge volcanic eruptions that changed the climate. These eruptions are thought to have originated in the Deccan Traps in India, approximately on the opposite side of the Earth from the Chicxulub crater at the time. Because North America was closer to Europe and India was closer to Madagascar during the Cretaceous period, however, it seemed questionable that the Deccan Traps were at the Chicxulub impact's antipode. 

"Regarding the mass extinction, we saw from our measurements that a Chicxulub-sized impact alone would be too small to cause such a large volcanic eruption as what occurred at the Deccan Traps. Our model shows that the antipodal focusing of the seismic wave from such an impact was hugely overestimated in previous calculations, which used a spherical-Earth model.

"The Earth's maximum ground displacement at this point has been calculated to be 15 meters, which is extreme. The first outcome of our model was that this is reduced by a large amount to about three to five meters. On the spherical model, all the waves come together at exactly one point and, as a result, have a huge amplitude. We found the waves are disturbed by surface features and take on a more ragged structure, meaning less energy is concentrated at the antipode."

For further information and photo:  http://www.princeton.edu/main/news/archive/S31/90/32S94/index.xml?section=topstories,featured

Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network