From: Andy Soos, ENN
Published June 12, 2012 03:39 PM

Fire, Fire Everywhere

How far can the effects of a fire be felt? There are some noteworthy fires in New Mexico right now for example. However, the ones that are lesser known are equally interesting. Fires burning in Siberia recently sent smoke across the Pacific Ocean and into the U.S. and Canada. Images of data taken by the nation’s newest Earth-observing satellite tracked aerosols from the fires taking six days to reach America's shores. Suomi National Polar-orbiting Partnership satellite’s Ozone Mapping Profiler Suite tracks aerosols, like this smoke, that are transported by winds across the globe. The Voice of Russia reported that 11,000 hectares (about 42.4 square miles) of forests in Siberia were on fire in May and that the Russian Ministry of Emergency Situations says roughly 80 percent of these fires are intentionally set to clear land for farming. The one in New Mexico covers about 14,000 hectares.

ADVERTISEMENT

"This smoke event is one example that shows that what happens over one area of the earth can easily affect another area thousands of miles away, whether it’s from Asia to North America or North America to Europe, and so on. Not only smoke and dust can get carried long distance. Pollutants, and even disease-carrying spores can be carried by the prevailing winds. For this event, I found out that the smoke plumes were lofted up to at least 12 kilometers (or about 7.5 miles) from the intense heat of the fires. At that point the smoke got picked up by higher level winds," Seftor, an atmospheric physicist working for Science Systems and Applications, Inc. at NASA Goddard Space Flight Center, says.

The thickest area of smoke appears over Mongolia. This high concentration was then transported across the Pacific Ocean and crosses into Alaska.

Seftor says that unlike photographs, satellite data shows researchers the difference between reflections of smoke and dust from those from snow, ice or the tops of clouds. The UV (ultra-violet) aerosol index is helpful because it makes "seeing" dust and smoke easier even when that background is bright. The aerosol index allows him to separate the aerosol signal from the background.

"One of the biggest uncertainties we’ve had in terms of understanding our climate has to do with aerosols and what exactly aerosols do to the climate," Seftor says, adding that the OMPS instrument adds to and expands on decades of scientific research. The Ozone Monitoring Instrument was the precursor to OMPS. "Climate changes often occur over long periods, and it takes decades of data and measurements to detect and understand them. "

A new scientific study in Ecospshere has found that North America and Europe must prepare for even more fires as global temperatures continue to rise from climate change.

Looking at 16 climate models and satellite data, the researchers found that fires will likely increase across much of North America and Europe. Evidence was especially strong across the various models that fires will increase both in the near term (2010-2039) and long term (2070-2099) in the western U.S.

For further information see Siberian Fire and New Mexico Fire.

Image via NASA.

Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network