From: Andy Soos, ENN
Published March 14, 2013 04:52 PM

Martian Stream Bed

Scientists have identified sulfur, nitrogen, hydrogen, oxygen, phosphorus and carbon - some of the key chemical ingredients for life - in the powder Curiosity drilled out of a sedimentary rock near an ancient stream bed in Gale Crater on the Red Planet last month. Sedimentary rock means running water once upon a time. Water often means life and the rock had the right chemistry to do this. Clues to this habitable environment come from data returned by the rover's Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. The data indicate the Yellowknife Bay area the rover is exploring was the end of an ancient river system or an intermittently wet lake bed that could have provided chemical energy and other favorable conditions for microbes. The rock is made up of a fine-grained mudstone containing clay minerals, sulfate minerals and other chemicals. This ancient wet environment, unlike some others on Mars, was not harshly oxidizing, acidic or extremely salty.

ADVERTISEMENT

The patch of bedrock where Curiosity drilled for its first sample lies in an ancient network of stream channels descending from the rim of Gale Crater. The bedrock also is fine-grained mudstone and shows evidence of multiple periods of wet conditions, including nodules and veins.

Current conditions on the planet surface do not support the long-term existence of liquid water. The average atmospheric pressure and temperature are far too low, leading to immediate freezing and resulting sublimation. Despite this, research suggests that in the past there was liquid water flowing on the surface.

Today, it is generally believed that Mars had abundant water very early in its history during which snow and rain fell on the planet and created rivers, lakes, and possibly oceans. Large clay deposits were produced. Life may even have come into existence. Large areas of liquid water have disappeared, but climate changes have frequently deposited large amounts of water-rich materials in mid-latitudes.  Recent images have also detected yearly changes on some slopes that may have been caused by liquid water.

Curiosity's drill collected the sample at a site just a few hundred yards away from where the rover earlier found an ancient stream bed in September 2012.

"Clay minerals make up at least 20 percent of the composition of this sample," said David Blake, principal investigator for the CheMin instrument at NASA's Ames Research Center in Moffett Field, Calif.

These clay minerals are a product of the reaction of relatively fresh water with igneous minerals, such as olivine, also present in the sediment. The reaction could have taken place within the sedimentary deposit, during transport of the sediment, or in the source region of the sediment. The presence of calcium sulfate along with the clay suggests the soil is neutral or mildly alkaline.

Scientists were surprised to find a mixture of oxidized, less-oxidized, and even non-oxidized chemicals, providing an energy gradient of the sort many microbes on Earth exploit to live. This partial oxidation was first hinted at when the drill cuttings were revealed to be gray rather than red.

"The range of chemical ingredients we have identified in the sample is impressive, and it suggests pairings such as sulfates and sulfides that indicate a possible chemical energy source for micro-organisms," said Paul Mahaffy, principal investigator of the SAM suite of instruments at NASA's Goddard Space Flight Center in Greenbelt, Md.

"We have characterized a very ancient, but strangely new gray Mars where conditions once were favorable for life," said John Grotzinger, Mars Science Laboratory project scientist at the California Institute of Technology in Pasadena, Calif. "Curiosity is on a mission of discovery and exploration, and as a team we feel there are many more exciting discoveries ahead of us in the months and years to come."

Scientists plan to work with Curiosity in the "Yellowknife Bay" area for many more weeks before beginning a long drive to Gale Crater's central mound, Mount Sharp. Investigating the stack of layers exposed on Mount Sharp, where clay minerals and sulfate minerals have been identified from orbit, may add information about the duration and diversity of habitable conditions.

For further information see Martian Stream Bed.

Two Different Aqueous Environments image via NASA

Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network