From: University of Minnesota
Published February 28, 2017 10:54 AM

Study finds secret to diverse forests' super success

We’ve long known that diverse stands of trees tend to be more productive than monocultures. What we haven’t known is why. In a paper published today in the scientific journal Nature Ecology & Evolution, researchers from the University of Minnesota and Université du Québec à Montréal show the talent behind the trait: Thanks to their natural different growth forms and ability to modify their shape to fit the available space, multiple species are able to fill in vertical gaps with branches and leaves. This maximizes their combined ability to soak up the sun falling on a particular plot of land and turn it into tree — absorbing planet-warming carbon dioxide and producing wood in the process.

“It’s a common hypothesis that complementarity matters,” says lead author Laura Williams, a graduate student in Ecology, Evolution and Behavior with the College of Biological Sciences at the University of Minnesota and advised by professors Peter Reich and Jeannine Cavender-Bares. “This is a case study that provides evidence to support complementarity in the use of space.”

To learn how diversity boosts productivity, Williams and colleagues looked at 37 plots of trees that had been planted in Montreal four years previously, ranging from a monoculture to a plot with 12 different tree species commonly found in northern forests. Using simple tools — measuring tapes and height poles — they characterized the vertical distribution of branches and leaves and amount of trunk biomass trees produced under the various combinations. They found that in plots with multiple species, the different natural growth forms and light requirements of the various species, combined with their ability to tailor their growth to their neighbors, made it possible for the trees to send branches into places where they could better use the available light, growing better together than in single-species plots. Not only that, but the better equipped the particular combination of species was to use the range of light environments within the forest canopy, the better packed the crowns and the more biomass the plot supported.

Read more at University of Minnesota

Photo credit: David Rees via Wikimedia Commons

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network