From: Danielle Torrent Tucker via Stanford University
Published March 6, 2017 04:26 PM

Stanford study shows U.S. grasslands affected more by atmospheric dryness than precipitation

According to 33 years of remote sensing data, productivity of U.S. grasslands is more sensitive to dryness of the atmosphere than precipitation, important information for understanding how ecosystems will respond to climate change.

A new study showing dryness of the atmosphere affects U.S. grassland productivity more than rainfall could have important implications for predicting how plants will respond to warming climate conditions.

Published online March 6 in the journal Nature Geoscience, the study conducted by scientists at Stanford University and Columbia University looked at 33 years of climate and vegetation satellite data to determine how plants regulate water and carbon dioxide under dry conditions. The team concluded that U.S. grasslands are more than three times more sensitive to vapor pressure deficit (VPD), or atmospheric dryness, than they are to precipitation. The study’s large-scale methods to understand plant behavior could be used to improve predictive models of how environments will respond to droughts, which are expected to intensify in the 21st century.

“Just looking at changes in precipitation isn’t going to tell you the whole story,” said lead author Alexandra Konings, an assistant professor of Earth System Science in Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “U.S. grasslands are way more sensitive to vapor pressure deficit, which is important. Because VPD is so tightly linked to temperature, we can predict that it’s going to keep going up in the future.”

Read more at Stanford University

Photo Credit: Leonardo Mercon / Shutterstock

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network