Study quantifies role of legacy phosphorus in reduced water quality

Typography

For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin–Madison reveals that a “legacy” of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.

For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin–Madison reveals that a “legacy” of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.

Published March 13 in the journal Ecosystems, the study may be the first to provide quantifiable evidence that eliminating the overabundance of phosphorus will be critical for improving the quality of Wisconsin’s lakes and rivers.

For example, the results indicate that a 50 percent reduction in soil phosphorus in the Yahara watershed’s croplands would improve water quality by reducing the summertime concentration of phosphorus in Lake Mendota, the region’s flagship lake, by 25 percent.
“If we continue to apply phosphorus at a greater rate than we remove it, then phosphorus accumulates over time and that’s what’s been happening over many decades in the Yahara watershed,” says Melissa Motew, the study’s lead author and a Ph.D. candidate in the UW–Madison Nelson Institute for Environmental Studies.

 

Continue reading at University of Wisconsin - Madison.

Photo via University of Wisconsin - Madison.