From: DOE/National Renewable Energy Laboratory
Published April 18, 2017 10:56 AM

NREL Establishes World Record for Solar Hydrogen Production

Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recaptured the record for highest efficiency in solar hydrogen production via a photoelectrochemical (PEC) water-splitting process.

The new solar-to-hydrogen (STH) efficiency record is 16.2 percent, topping a reported14 percent efficiency in 2015 by an international team made up of researchers from Helmholtz-Zentrum Berlin, TU Ilmenau, Fraunhofer ISE and the California Institute of Technology. A paper in Nature Energy titled Direct Solar-to-hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures outlines how NREL's new record was achieved. The authors are James Young, Myles Steiner, Ryan France, John Turner, and Todd Deutsch, all from NREL, and Henning Döscher of Philipps-Universität Marburg in Germany. Döscher has an affiliation with NREL.

The record-setting PEC cell represents a significant change from the concept device Turner developed at NREL in the 1990s.

Both the old and new PEC processes employ stacks of light-absorbing tandem semiconductors that are immersed in an acid/water solution (electrolyte) where the water-splitting reaction occurs to form hydrogen and oxygen gases. But unlike the original device made of gallium indium phosphide (GaInP2) grown on top of gallium arsenide (GaAs), the new PEC cell is grown upside-down, from top to bottom, resulting in a so-called inverted metamorphic multijunction (IMM) device.

Read more at DOE/National Renewable Energy Laboratory

Image: NREL researchers Myles Steiner (left), John Turner, Todd Deutsch and James Young stand in front of an atmospheric pressure MDCVD reactor used to grow crystalline semiconductor structures. They are co-authors of the paper "Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures" published in Nature Energy. (Credit: Dennis Schroeder)

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network