Stanford discovery could lead to sustainable source of the fuel additive ethanol

Typography

Most cars and trucks in the United States run on a blend of 90 percent gasoline and 10 percent ethanol, a renewable fuel made primarily from fermented corn. But producing the 14 billion gallons of ethanol consumed annually by American drivers requires millions of acres of farmland.

A recent discovery by Stanford University scientists could lead to a new, more sustainable way to make ethanol without corn or other crops. This technology has three basic components: water, carbon dioxide and electricity delivered through a copper catalyst. The results are published in Proceedings of the National Academy of Sciences.

Most cars and trucks in the United States run on a blend of 90 percent gasoline and 10 percent ethanol, a renewable fuel made primarily from fermented corn. But producing the 14 billion gallons of ethanol consumed annually by American drivers requires millions of acres of farmland.

A recent discovery by Stanford University scientists could lead to a new, more sustainable way to make ethanol without corn or other crops. This technology has three basic components: water, carbon dioxide and electricity delivered through a copper catalyst. The results are published in Proceedings of the National Academy of Sciences.

“One of our long-range goals is to produce renewable ethanol in a way that doesn’t impact the global food supply,” said study principal investigator Thomas Jaramillo, an associate professor of chemical engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.

Continue reading at Stanford University

Image: Stanford scientists have designed a large copper catalyst that produces ethanol from carbon dioxide and water. (Image credit: Mark Shwartz / Stanford University)