From: Rice University
Published June 28, 2017 10:38 AM

Ruthenium rules for new fuel cells

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

Catalysts that drive the oxygen reduction reaction that lets fuel cells turn chemical energy into electricity are usually made of platinum, which stands up to the acidic nature of the cell’s charge-carrying electrolyte. But platinum is expensive, and scientists have searched for decades for a suitable replacement.

The ruthenium-graphene combination may fit the bill, said chemist James Tour, whose lab developed the material with his colleagues at Rice and in China. In tests, its performance easily matched that of traditional platinum-based alloys and bested iron and nitrogen-doped graphene, another contender.

A paper on the discovery appears in the American Chemical Society journal ACS Nano.

“Ruthenium is often a highly active catalyst when fixed between arrays of four nitrogen atoms, yet it is one-tenth the cost of traditional platinum,” Tour said. “And since we are using single atomic sites rather than small particles, there are no buried atoms that cannot react. All the atoms are available for reaction.”

Continue reading at Rice University

Image: Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene. (Credit: Chris Zhang / Rice University)

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network