A 'Turbo Charge' for Your Brain?

Typography

Robert Reinhart calls the medial frontal cortex the “alarm bell of the brain.”

“If you make an error, this brain area fires,” says Reinhart, an assistant professor of psychological and brain sciences at Boston University. “If I tell you that you make an error, it also fires. If something surprises you, it fires.” Hit a sour note on the piano and the medial frontal cortex lights up, helping you correct your mistake as fast as possible. In healthy people, this region of the brain works hand in hand (or perhaps lobe in lobe) with a nearby region, the lateral prefrontal cortex, an area that stores rules and goals and also plays an important role in changing our decisions and actions.

Robert Reinhart calls the medial frontal cortex the “alarm bell of the brain.”

“If you make an error, this brain area fires,” says Reinhart, an assistant professor of psychological and brain sciences at Boston University. “If I tell you that you make an error, it also fires. If something surprises you, it fires.” Hit a sour note on the piano and the medial frontal cortex lights up, helping you correct your mistake as fast as possible. In healthy people, this region of the brain works hand in hand (or perhaps lobe in lobe) with a nearby region, the lateral prefrontal cortex, an area that stores rules and goals and also plays an important role in changing our decisions and actions.

“These are maybe the two most fundamental brain areas involved with executive function and self-control,” says Reinhart, who used a new technique called high-definition transcranial alternating current stimulation (HD-tACS) to stimulate these two regions with electrodes placed on a participant’s scalp. Using this new technology, he found that improving the synchronization of brain waves, or oscillations, between these two regions enhanced their communication with each other, allowing participants to perform better on laboratory tasks related to learning and self-control.

Read more at Boston University

Image: The large red blob (left) indicates an increase in the timing, or synchronization, between brain waves measured over the medial frontal cortex and right lateral prefrontal cortex. This enhanced timing across brain regions specifically occurred at low frequencies, right after participants viewed negative feedback. This increase in synchronization corresponded with improvement in behavior related to learning and self-control.

Image Credit: Courtesy of Robert Reinhart