Climate

NIST/CU Team Launches 'Comb and Copter' System to Map Atmospheric Gases
June 23, 2017 01:49 PM - National Institute of Standards and Technology (NIST)

Researchers from the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder have demonstrated a new mobile, ground-based system that could scan and map atmospheric gas plumes over kilometer distances.

The system uses an eye-safe laser instrument to send light that “combs” the air to a flying multi-copter and analyzes the colors of light absorbed along the way to identify gas signatures in near-real time.

The “comb and copter” system may be useful to scan for leaks in oil and gas fields, study the mixing of auto emissions and other gases in the boundary between the Earth’s surface and the next layer of the atmosphere, or, with planned upgrades, detect pollutants or chemical threats and their sources.

Extraordinary storms caused massive Antarctic sea ice loss in 2016
June 23, 2017 11:29 AM - British Antarctic Survey

A series of unprecedented storms over the Southern Ocean likely caused the most dramatic decline in Antarctic sea ice seen to date, a new study finds.

How the climate can rapidly change at tipping points
June 23, 2017 11:18 AM - Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

During the last glacial period, within only a few decades the influence of atmospheric CO2 on the North Atlantic circulation resulted in temperature increases of up to 10 degrees Celsius in Greenland – as indicated by new climate calculations from researchers at the Alfred Wegener Institute and the University of Cardiff. Their study is the first to confirm that there have been situations in our planet’s history in which gradually rising CO2 concentrations have set off abrupt changes in ocean circulation and climate at “tipping points”. These sudden changes, referred to as Dansgaard-Oeschger events, have been observed in ice cores collected in Greenland. The results of the study have just been released in the journal Nature Geoscience.

How the climate can rapidly change at tipping points
June 23, 2017 11:18 AM - Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

During the last glacial period, within only a few decades the influence of atmospheric CO2 on the North Atlantic circulation resulted in temperature increases of up to 10 degrees Celsius in Greenland – as indicated by new climate calculations from researchers at the Alfred Wegener Institute and the University of Cardiff. Their study is the first to confirm that there have been situations in our planet’s history in which gradually rising CO2 concentrations have set off abrupt changes in ocean circulation and climate at “tipping points”. These sudden changes, referred to as Dansgaard-Oeschger events, have been observed in ice cores collected in Greenland. The results of the study have just been released in the journal Nature Geoscience.

Can animal diet mitigate greenhouse emissions?
June 22, 2017 03:39 PM - Technical University of Madrid (UPM)

A research of UPM and UPV has shown that the inclusion of agroindustrial by-products in pig feed can reduce the nitrous oxide emissions (N2O) of the slurry used as manures up to 65%.

The aim of this study carried out by UPM researchers with the collaboration of Institute for Animal Science and Technology of UPV was to influence the ingredients of pig diet to modify the composition of slurry used as manures and to assess the possible variations on N2O emissions.

NASA's Infrared and Radar Eyes in Space Cast on Tropical Storm Cindy
June 22, 2017 03:09 PM - National Aeronautics and Space Administration

NASA's Aqua satellite analyzed Tropical Storm Cindy in infrared light to identify areas of strongest storms and the Global Precipitation Measurement mission or GPM satellite found locations of heaviest rainfall as Cindy was making landfall along the U.S. Gulf Coast states.

The Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite looked at Tropical Depression Cindy in infrared light. The AIRS image was taken on June 21 at 19:53 UTC (3:53 p.m. EST) and showed some cloud top temperatures of thunderstorms near the center of circulation as cold as minus 63 degrees Fahrenheit (minus 53 degrees Celsius). NASA research has shown the storms with cloud tops that cold have the potential to generate heavy rainfall. 

The infrared data was false-colored at NASA's Jet Propulsion Laboratory in Pasadena, California, where AIRS data is managed.

Cindy made landfall around 3 a.m. CDT in southwestern Louisiana. At that time, the National Hurricane Center or NHC said that Cindy was centered about 30 miles (45 km) west-southwest of Lake Charles, Louisiana.

NASA's Infrared and Radar Eyes in Space Cast on Tropical Storm Cindy
June 22, 2017 03:09 PM - National Aeronautics and Space Administration

NASA's Aqua satellite analyzed Tropical Storm Cindy in infrared light to identify areas of strongest storms and the Global Precipitation Measurement mission or GPM satellite found locations of heaviest rainfall as Cindy was making landfall along the U.S. Gulf Coast states.

The Atmospheric Infrared Sounder or AIRS instrument aboard NASA's Aqua satellite looked at Tropical Depression Cindy in infrared light. The AIRS image was taken on June 21 at 19:53 UTC (3:53 p.m. EST) and showed some cloud top temperatures of thunderstorms near the center of circulation as cold as minus 63 degrees Fahrenheit (minus 53 degrees Celsius). NASA research has shown the storms with cloud tops that cold have the potential to generate heavy rainfall. 

The infrared data was false-colored at NASA's Jet Propulsion Laboratory in Pasadena, California, where AIRS data is managed.

Cindy made landfall around 3 a.m. CDT in southwestern Louisiana. At that time, the National Hurricane Center or NHC said that Cindy was centered about 30 miles (45 km) west-southwest of Lake Charles, Louisiana.

Charting a better future for Africa
June 22, 2017 11:05 AM - Massachusetts Institute of Technology

Almost 25 percent of the world’s malnourished population lives in sub-Saharan Africa (SSA), where more than 300 million people depend on maize (corn) for much of their diet. The most widely-produced crop by harvested area in SSA, maize is also highly sensitive to drought. Because maize in this region is grown largely on rainfed rather than irrigated land, any future changes in precipitation patterns due to climate change could significantly impact crop yields. Assessing the likely magnitude and locations of such yield changes in the coming decades will be critical for decision makers seeking to help their nations and regions adapt to climate change and minimize threats to food security and to rural economies that are heavily dependent on agriculture.

Charting a better future for Africa
June 22, 2017 11:05 AM - Massachusetts Institute of Technology

Almost 25 percent of the world’s malnourished population lives in sub-Saharan Africa (SSA), where more than 300 million people depend on maize (corn) for much of their diet. The most widely-produced crop by harvested area in SSA, maize is also highly sensitive to drought. Because maize in this region is grown largely on rainfed rather than irrigated land, any future changes in precipitation patterns due to climate change could significantly impact crop yields. Assessing the likely magnitude and locations of such yield changes in the coming decades will be critical for decision makers seeking to help their nations and regions adapt to climate change and minimize threats to food security and to rural economies that are heavily dependent on agriculture.

Can the tobacco and fossil fuel industries be compared?
June 22, 2017 08:21 AM - University of Calgary

Are there similarities between the tobacco industry and the fossil fuel industry when it comes to legal liability? Could, for example, energy companies that rely on fossil fuels and emit greenhouse gases be held accountable for the damage caused by climate change? Two researchers in the Faculty of Law have set out to answer these important questions.

First | Previous | 1 | 2 | 3 | Next | Last