Energy

Engineers develop tools to share power from renewable energy sources during outages
September 5, 2017 03:42 PM - University of California - San Diego

If you think you can use the solar panels on your roof to power your home during an outage, think again. During an outage, while your home remains connected to the grid, the devices that manage your solar panels are powered down for safety reasons. In other words, this permanent connection to the grid makes it impossible for homeowners to draw on power generated by their own renewable energy resources.

Stanford professor tests a cooling system that works without electricity
September 5, 2017 03:25 PM - Stanford University

It looks like a regular roof, but the top of the Packard Electrical Engineering Building at Stanford University has been the setting of many milestones in the development of an innovative cooling technology that could someday be part of our everyday lives. Since 2013, Shanhui Fan, professor of electrical engineering, and his students and research associates have employed this roof as a testbed for a high-tech mirror-like optical surface that could be the future of lower-energy air conditioning and refrigeration.

Stanford professor tests a cooling system that works without electricity
September 5, 2017 03:25 PM - Stanford University

It looks like a regular roof, but the top of the Packard Electrical Engineering Building at Stanford University has been the setting of many milestones in the development of an innovative cooling technology that could someday be part of our everyday lives. Since 2013, Shanhui Fan, professor of electrical engineering, and his students and research associates have employed this roof as a testbed for a high-tech mirror-like optical surface that could be the future of lower-energy air conditioning and refrigeration.

A revolution in lithium-ion batteries is becoming more realistic
September 5, 2017 11:56 AM - IFJ PAN

The modern world relies on portable electronic devices such as smartphones, tablets, laptops, cameras or camcorders. Many of these devices are powered by lithium-ion batteries, which could be smaller, lighter, safer and more efficient if the liquid electrolytes they contain were replaced by solids. A promising candidate for a solid-state electrolyte is a new class of materials based on lithium compounds, presented by physicists from Switzerland and Poland.

A revolution in lithium-ion batteries is becoming more realistic
September 5, 2017 11:56 AM - IFJ PAN

The modern world relies on portable electronic devices such as smartphones, tablets, laptops, cameras or camcorders. Many of these devices are powered by lithium-ion batteries, which could be smaller, lighter, safer and more efficient if the liquid electrolytes they contain were replaced by solids. A promising candidate for a solid-state electrolyte is a new class of materials based on lithium compounds, presented by physicists from Switzerland and Poland.

ASU team shines new light on photosynthesis
September 1, 2017 09:15 AM - Arizona State University

A team of scientists from ASU’s School of Molecular Sciences and Pennsylvania State University has taken us a step closer to unlocking the secrets of photosynthesis, and possibly to cleaner fuels.

Photosynthesis Discovery Could Lead to Design of More Efficient Artificial Solar Cells
August 29, 2017 02:25 PM - Georgia State University

A natural process that occurs during photosynthesis could lead to the design of more efficient artificial solar cells, according to researchers at Georgia State University.

During photosynthesis, plants and other organisms, such as algae and cyanobacteria, convert solar energy into chemical energy that can later be used as fuel for activities. In plants, light energy from the sun causes an electron to rapidly move across the cell membrane. In artificial solar cells, the electron often returns to its starting point and the captured solar energy is lost. In plants, the electron virtually never returns to its starting point, and this is why solar energy capture in plants is so efficient. A process called inverted-region electron transfer could contribute to inhibiting this “back electron transfer.”

Photosynthesis Discovery Could Lead to Design of More Efficient Artificial Solar Cells
August 29, 2017 02:25 PM - Georgia State University

A natural process that occurs during photosynthesis could lead to the design of more efficient artificial solar cells, according to researchers at Georgia State University.

During photosynthesis, plants and other organisms, such as algae and cyanobacteria, convert solar energy into chemical energy that can later be used as fuel for activities. In plants, light energy from the sun causes an electron to rapidly move across the cell membrane. In artificial solar cells, the electron often returns to its starting point and the captured solar energy is lost. In plants, the electron virtually never returns to its starting point, and this is why solar energy capture in plants is so efficient. A process called inverted-region electron transfer could contribute to inhibiting this “back electron transfer.”

NREL, Swiss Scientists Power Past Solar Efficiency Records
August 29, 2017 11:43 AM - DOE / National Renewable Energy Laboratory

Collaboration between researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the Swiss Center for Electronics and Microtechnology (CSEM), and the École Polytechnique Fédérale de Lausanne (EPFL) shows the high potential of silicon-based multijunction solar cells.

NREL, Swiss Scientists Power Past Solar Efficiency Records
August 29, 2017 11:43 AM - DOE / National Renewable Energy Laboratory

Collaboration between researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the Swiss Center for Electronics and Microtechnology (CSEM), and the École Polytechnique Fédérale de Lausanne (EPFL) shows the high potential of silicon-based multijunction solar cells.

First | Previous | 4 | 5 | 6 | 7 | 8 | Next | Last