Soon solar will be the cheapest power everywhere
July 22, 2016 10:04 AM - Chris Goodall, The Ecologist

Solar is already the cheapest available power across large swathes of the tropics, writes Chris Goodall - its cost down 99.7% since the early 70s. Soon it will be the cheapest electricity everywhere, providing clean, secure, affordable energy for all.

Towards the end of last year, Shell CEO Ben van Beurden made a little-noticed remark. He said that solar would become the "dominant backbone" of the world's energy system.

He didn't give a date for his prediction, or indeed define what 'dominant' means, but he accepted that the sun will eventually provide the cheapest energy source across almost all of the world.

Mars rover's laser can now target rocks all by itself
July 21, 2016 05:07 PM - DOE/LOS Alamos National Laboratory via EurekAlert!

New software is enabling ChemCam, the laser spectrometer on NASA's Curiosity Mars rover, to select rock targets autonomously -- the first time autonomous target selection is available for an instrument of this kind on any robotic planetary mission. Developed jointly at Los Alamos National Laboratory and the Research Institute in Astrophysics and Planetology in Toulouse, France, the ChemCam (chemistry and camera) instrument aboard Curiosity "zaps" rocks on Mars and analyzes their chemical make-up. While most ChemCam targets are still selected by scientists, the rover itself now chooses multiple targets per week.

"This new capability will give us a chance to analyze even more rock and soil samples on Mars," said Roger Wiens, principal investigator for ChemCam at Los Alamos. "The science team is not always available to pick samples for analysis. Having a smarter rover that can pick its own samples is completely in line with self-driving cars and other smart technologies being implemented on Earth."

Offshore wind powers ahead as prices drop 30% below nuclear
July 19, 2016 09:30 AM - Kieran Cooke, The Ecologist

The cost of offshore wind power in the North Sea is 30% lower than that of new nuclear, writes Kieran Cooke - helped along by low oil and steel prices, reduced maintenance and mass production. By 2030 the sector is expected to supply 7% of Europe's electricity. Output from the Dogger Bank project will be 1.2 GW (gigawatts) - enough to power more than a million homes. Next year, a 150-turbine wind farm off the coast of the Netherlands is due to start operating, and other schemes along the Dutch coast are in the works. Denmark, Sweden and Portugal are major investors in offshore wind, and China has ambitious plans for the sector. Wind farms - both onshore and offshore - are a key ingredient in renewable energy policy, and an important element in the battle against climate change. WindEurope, an offshore wind industry group, says that at the present rate of installations it's likely Europe will be producing about 7% of its electricity from offshore wind by 2030.

Offshore wind developers benefit from falling costs

By some calculations, all this building work would seem to make little economic sense. Fossil fuel prices are low on the world market, and constructing offshore wind farms several kilometres out at sea, in often treacherous conditions, has traditionally been an expensive business.

Hummingbird vision wired to avoid high-speed collisions
July 18, 2016 04:10 PM - University of British Columbia via EurekAlert!

Hummingbirds are among nature's most agile fliers. They can travel faster than 50 kilometres per hour and stop on a dime to navigate through dense vegetation.

Now researchers have discovered that the tiny birds process visual information differently from other animals, perhaps to handle the demands of their extreme aerial acrobatics.

"Birds fly faster than insects and it's more dangerous if they collide with things," said Roslyn Dakin, a postdoctoral fellow in the UBC's department of zoology who led the study. "We wanted to know how they avoid collisions and we found that hummingbirds use their environment differently than insects to steer a precise course."

Note: Watch a video of the experiments here:

Scientists at UBC placed hummingbirds in a specially-designed tunnel and projected patterns on the walls to figure out how the birds steer a course to avoid collisions when they are in flight. They set up eight cameras to track the movement of hummingbirds as they flew through a 5.5-metre long tunnel.

Trees rely on a range of strategies to hunt for nutrient hot spots
July 18, 2016 03:59 PM - Penn State via EurekAlert!

On the surface, trees may look stationary, but underground their roots -- aided by their fungal allies -- are constantly on the hunt and using a surprising number of strategies to find food, according to an international team of researchers.

The precision of the nutrient-seeking strategies that help trees grow in temperate forests may be related to the thickness of the trees' roots and the type of fungi they use, according to David Eissenstat, professor of woody plant physiology, Penn State. The tree must use a variety of strategies because nutrients often collect in pockets -- or hot spots -- in the soil, he added.

"What we found is that different species get nutrients in different ways and that depends both on that species' type of root -- whether it's thin or thick -- and that species' type of mycorrhizal fungi, which is a symbiotic fungus," said Eissenstat. "What we show is that you really can't understand this process without thinking about the roots and the mycorrhizal fungi together."

Tree species with thicker roots -- for example, the tulip poplar and pine - avoid actively seeking nutrient hot spots and instead send out more permanent, longer-lasting roots. On the other hand, some trees with thinner roots search for nutrients by selectively growing roots that are more temporary, or by using their fungal allies to find hot spots.

A battery inspired by vitamins
July 18, 2016 03:12 PM - John A. Paulson School of Engineering and Applied Sciences via EurekAlert!

Harvard researchers have identified a whole new class of high-performing organic molecules, inspired by vitamin B2, that can safely store electricity from intermittent energy sources like solar and wind power in large batteries.

The development builds on previous work in which the team developed a high-capacity flow battery that stored energy in organic molecules called quinones and a food additive called ferrocyanide. That advance was a game-changer, delivering the first high-performance, non-flammable, non-toxic, non-corrosive, and low-cost chemicals that could enable large-scale, inexpensive electricity storage.

While the versatile quinones show great promise for flow batteries, Harvard researchers continued to explore other organic molecules in pursuit of even better performance. But finding that same versatility in other organic systems has been challenging.

WSU researchers determine key improvement for fuel cells
July 18, 2016 02:15 PM - Washington State University via EurekAlert!

Washington State University researchers have determined a key step in improving solid oxide fuel cells (SOFCs), a promising clean energy technology that has struggled to gain wide acceptance in the marketplace.

The researchers determined a way to improve one of the primary failure points for the fuel cell, overcoming key issues that have hindered its acceptance. Their work is featured on the cover of the latest issue of Journal of Physical Chemistry C.

Fuel cells offer a clean and highly efficient way to convert the chemical energy in fuels directly into electrical energy. They are similar to batteries in that they have an anode, cathode and electrolyte and create electricity, but they use fuel to create a continuous flow of electricity.

Fuel cells can be about four times more efficient than a combustion engine because they are based on electrochemical reactions, but researchers continue to struggle with making them cheaply and efficiently enough to compete with traditional power generation sources.

Mobile app for rain forecasts raises farmers' yields
July 14, 2016 07:12 AM - Baraka Rateng, SciDevNet

A mobile phone-based innovation that can predict rain is helping farmers in six Sub-Saharan Africa countries sow, fertilise and harvest crops at the optimum time.

The innovation is being used in Cote d'Ivoire, Ghana, Mali, Niger, Nigeria and Senegal to improve crop yields and optimise food production through information and communication technology (ICT) weather forecasting model that produces Global Positioning System (GPS)-specific forecasts.

Electricity generated with water, salt and a 3-atoms-thick membrane
July 13, 2016 02:16 PM - Ecole Polytechnique Fédérale De Lausanne via EurekAlert!

EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms thick

Proponents of clean energy will soon have a new source to add to their existing array of solar, wind, and hydropower: osmotic power. Or more specifically, energy generated by a natural phenomenon occurring when fresh water comes into contact with seawater through a membrane.

Researchers at EPFL's Laboratory of Nanoscale Biology have developed an osmotic power generation system that delivers never-before-seen yields. Their innovation lies in a three atoms thick membrane used to separate the two fluids. The results of their research have been published in Nature.

NASA eyes first-ever carbon-nanotube mirrors for CubeSat telescope
July 12, 2016 03:38 PM - Nasa/Goddard Space Flight Center via EurekAlert!

A lightweight telescope that a team of NASA scientists and engineers is developing specifically for CubeSat scientific investigations could become the first to carry a mirror made of carbon nanotubes in an epoxy resin.

Led by Theodor Kostiuk, a scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, the technology-development effort is aimed at giving the scientific community a compact, reproducible, and relatively inexpensive telescope that would fit easily inside a CubeSat. Individual CubeSats measure four inches on a side.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA. These miniature satellites provide a low-cost platform for NASA missions, including planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities. They also allow an inexpensive means to engage students in all phases of satellite development, operation and exploitation through real-world, hands-on research and development experience on NASA-funded rideshare launch opportunities.

First | Previous | 1 | 2 | 3 | 4 | Next | Last