Sci/tech

On College Campuses, Signs of Progress on Renewable Energy
October 27, 2016 09:32 AM - Ben Goldfarb via Yale Environment 360

U.S. colleges and universities are increasingly deploying solar arrays and other forms of renewable energy. Yet most institutions have a long way to go if they are to meet their goal of being carbon neutral in the coming decades.

The soul of Arizona State University is Memorial Union, a hulking brick-and-glass community center that opens onto a sprawling pedestrian mall. Although the building sits at the heart of campus, its outdoor plaza was once virtually uninhabitable for four months each year, when summer temperatures in scorching Tempe often hover over 100 degrees. So in 2014, the university – Arizona’s leading energy consumer – completed construction on a PowerParasol, a 25-foot-tall shade canopy composed of 1,380 photovoltaic solar panels capable of producing 397 kilowatts of electricity.

Better water splitting advances renewable energy conversion
October 25, 2016 01:45 PM - Washington State University - Pullman

Washington State University researchers have found a way to more efficiently create hydrogen from water – an important key in making renewable energy production and storage viable.

The researchers, led by professors Yuehe Lin and Scott Beckman in the School of Mechanical and Materials Engineering, have developed a catalyst from low cost materials. It performs as well as or better than catalysts made from precious metals that are used for the process.

From Ancient Fossils to Future Cars
October 21, 2016 11:25 AM - Sarah Nightingale

Researchers at the University of California, Riverside’s Bourns College of Engineering have developed an inexpensive, energy-efficient way to create silicon-based anodes for lithium-ion batteries from the fossilized remains of single-celled algae called diatoms. The research could lead to the development of ultra-high capacity lithium-ion batteries for electric vehicles and portable electronics.

Non-metal catalyst splits hydrogen molecule
October 21, 2016 11:09 AM - Professor Matthias Wagner

Hydrogen (H2) is an extremely simple molecule and yet a valuable raw material which as a result of the development of sophisticated catalysts is becoming more and more important. In industry and commerce, applications range from food and fertilizer manufacture to crude oil cracking to utilization as an energy source in fuel cells. A challenge lies in splitting the strong H-H bond under mild conditions. Chemists at Goethe University have now developed a new catalyst for the activation of hydrogen by introducing boron atoms into a common organic molecule. The process, which was described in theAngewandte Chemie journal, requires only an electron source in addition and should therefore be usable on a broad scale in future.

New perovskite solar cell design could outperform existing commercial technologies, Stanford and Oxford scientists report
October 21, 2016 10:51 AM - Mark Shwartz

A new design for solar cells that uses inexpensive, commonly available materials could rival and even outperform conventional cells made of silicon.

Writing in the Oct. 21 edition of Science, researchers from Stanford and Oxford describe using tin and other abundant elements to create novel forms of perovskite – a photovoltaic crystalline material that’s thinner, more flexible and easier to manufacture than silicon crystals.

Safe new storage method could be key to future of hydrogen-powered vehicles
October 20, 2016 01:38 PM - University of Cambridge

Hydrogen is often described as the fuel of the future, particularly when applied to hydrogen-powered fuel cell vehicles. One of the main obstacles facing this technology – a potential solution to future sustainable transport – has been the lack of a lightweight, safe on-board hydrogen storage material.

Discovery of Carbon Storage Signaling Mechanism in Algae Offers New Potential for Sustainable Biofuel Production
October 19, 2016 03:44 PM - Donald Danforth Plant Science Center

James Umen, Ph.D., associate member at Donald Danforth Plant Science Center, and colleagues have discovered a way to make algae better oil producers without sacrificing growth. The findings were published September 6, in a paper titled, “Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas,” in The Plant Cell. Umen and his team including lead author Inmaculada Couso, Ph.D., and collaborators Bradley Evans Ph.D., director, Proteomics & Mass Spectrometry and Doug Allen, Ph.D., USDA Research Scientist at the Danforth Center identified a mutation in the green alga Chlamydomonas which substantially removes a constraint that is widely observed in micro-algae where the highest yields of oil can only be obtained from starving cultures.

MIT to neutralize 17 percent of carbon emissions through purchase of solar energy
October 19, 2016 03:14 PM - David L. Chandler via Massachusetts Institute of Technology

MIT, Boston Medical Center, and Post Office Square Redevelopment Corporation have formed an alliance to buy electricity from a large new solar power installation, adding carbon-free energy to the grid and demonstrating a partnership model for other organizations in climate-change mitigation efforts.

The agreement will enable the construction of a roughly 650-acre, 60-megawatt solar farm on farmland in North Carolina. Called Summit Farms, the facility, the largest renewable-energy project ever built in the U.S. through an alliance of diverse buyers, is expected to be completed and to begin delivering power into the grid by the end of this year.

Unraveling the Science Behind Biomass Breakdown
October 18, 2016 04:39 PM - Rachel Harken via Oak Ridge National Laboratory

Lignocellulosic biomass—plant matter such as cornstalks, straw, and woody plants—is a sustainable source for production of bio-based fuels and chemicals. However, the deconstruction of biomass is one of the most complex processes in bioenergy technologies. Although researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) had already uncovered information about how woody plants and waste biomass can be converted into biofuel more easily, they have now discovered the chemical details behind that process.

Researchers use 'robomussels' to monitor climate change
October 18, 2016 07:07 AM - Northeastern University

Tiny robots have been helping researchers study how cli­mate change affects bio­di­ver­sity. Devel­oped by North­eastern Uni­ver­sity sci­en­tist Brian Hel­muth, the “robo­mus­sels” have the shape, size, and color of actual mus­sels, with minia­ture built-in sen­sors that track tem­per­a­tures inside the mussel beds.

First | Previous | 1 | 2 | 3 | 4 | 5 | Next | Last