Cornell scientists convert carbon dioxide, create electricity
August 5, 2016 03:08 PM - Cornell University via EurekAlert!

While the human race will always leave its carbon footprint on the Earth, it must continue to find ways to lessen the impact of its fossil fuel consumption.

"Carbon capture" technologies - chemically trapping carbon dioxide before it is released into the atmosphere - is one approach. In a recent study, Cornell University researchers disclose a novel method for capturing the greenhouse gas and converting it to a useful product - while producing electrical energy.

Lynden Archer, the James A. Friend Family Distinguished Professor of Engineering, and doctoral student Wajdi Al Sadat have developed an oxygen-assisted aluminum/carbon dioxide power cell that uses electrochemical reactions to both sequester the carbon dioxide and produce electricity.

Abu Dhabi project uses sand to store solar power
August 5, 2016 11:00 AM - Ali Audi, SciDevNet

Researchers in Abu Dhabi are testing a pilot device that can store solar energy in sand to improve the efficiency of power plants and provide energy at night.

The technology, developed at the Masdar Institute of Science and Technology, uses gravity to drain sand from a higher basin into a lower one, heating up the sand grains with solar power during the transition. In the lower basin, the energy can be stored and withdrawn at low cost to provide extra energy if needed, for example during peak hours and at night-time.

"Two pilot models of the system have been tested in an effort to prove its efficiency and applicability on a large scale in big projects,” says Nicolas Calvet, an assistant professor at the Masdar institute’s department of mechanical engineering.  


A research project coordinated by UC3M helps reduce the cost of parallel computing
July 29, 2016 04:41 PM - CARLOS III UNIVERSITY OF MADRID via EurekAlert!

Heterogeneous parallel computing combines various processing elements with different characteristics that share a single memory system. Normally multiple cores (like the 'multicores' in some smart phones or personal computers) are combined with graphic cards and other components to process large quantities of data.

"We hope to help transform code so that it can be run in heterogeneous parallel platforms with multiple graphic cards and reconfigurable hardware," explains the project's coordinator, José Daniel García, an associate professor in UC3M's Computer Science department. "We've made significant improvements in both performance and energy efficiency, comparable to those that can be made with a manual development process; the difference is that with a manual development process, we need months of engineering, while with our semiautomatic process we can do the same tasks in a few days."

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas
July 29, 2016 04:25 PM - DOE/OAK Ridge National Laboratory via EurekAlert!

Climate and energy scientists at the Department of Energy's Oak Ridge National Laboratory have developed a new method to pinpoint which electrical service areas will be most vulnerable as populations grow and temperatures rise.

"For the first time, we were able to apply data at a high enough resolution to be relevant," said ORNL's Melissa Allen, co-author of "Impacts of Climate Change on Sub-regional Electricity Demand and Distribution in the Southern United States," published in Nature Energy.

Butterflies use differences in leaf shape to distinguish between plants
July 28, 2016 04:46 PM - Frontiers in Ecology and Evolution via EurekAlert!

The preference of Heliconius butterflies for certain leaf shapes is innate, but can be reversed through learning. These results support a decades-old theory for explaining the evolution of the exceptional diversity of leaf shapes in passionflowers.

The tropical butterfly Heliconius eratodistinguishes between shapes, and uses them as a cue for choosing the plants on which to feed and lay eggs, shows new research by scientists from the University of Cambridge and the Smithsonian Tropical Research Institute. The butterfly has an innate preference for passionflowers with particular leaf shapes, but can learn to overcome this preference in favor of other shapes, especially those that are the most abundant in the local flora. These preferences can promote the evolution of plant biodiversity.

First whale detected by newly deployed acoustic buoy in New York Bight
July 28, 2016 04:15 PM - Wildlife Conservation Society via EurekAlert!

A new acoustic buoy recently deployed by scientists from the Woods Hole Oceanographic Institution (WHOI) and WCS's (Wildlife Conservation Society) New York Aquarium to listen for some of the world's biggest animals in the New York Bight has detected its first whale species, and it's a really big one.

Fixed in position some 22 miles south of Fire Island and fitted with a digital acoustic monitoring instrument, the hi-tech buoy is now operational and has detected the vocalizations of fin whales, enormous marine mammals second in size only to the blue whale, the largest animal species on earth. The first whale detection was made on Monday, July 4th, only 12 days after the buoy was placed in its current position on June 23rd.

Since that time, the buoy has made several fin whale detections; the most recent vocalizations were detected yesterday (July 27th) and today.

Videos reveal birds, bats and bugs near Ivanpah solar project power towers
July 27, 2016 04:15 PM - Us Geological Survey via EurekAlert!

Video surveillance is the most effective method for detecting animals flying around solar power towers, according to a study of various techniques by the U.S. Geological Survey and its partners at the Ivanpah Solar Electric Generating System facility in southeastern California.

This study is the first to examine a variety of remote sensing and sampling techniques to determine which technology might be most effective for monitoring how solar power facilities impact flying animals. The information will be used to further study the effects of solar power infrastructure on flying animals -- a subject about which little is known -- and to develop ways to lessen harmful effects.

At Ivanpah, evidence of flying animals impacted by intense heat near the solar towers had been observed. The new study showed that although birds and bats were occasionally seen near the towers at Ivanpah, most observations involved insects.

Silicon-air battery achieves running time of over 1,000 hours for the first time
July 26, 2016 03:48 PM - Forschungszentrum Juelich via ScienceDaily

Silicon-air batteries are viewed as a promising and cost-effective alternative to current energy storage technology. However, they have thus far only achieved relatively short running times. Jülich researchers have now discovered why.

In theory, silicon-air batteries have a much higher energy density and are also smaller and lighter than current lithium-ion batteries. They are also environmentally friendly and insensitive to external influences. Their most important advantage, however, is their material. Silicon is the second most abundant element in the Earth's crust after oxygen: it is cheap and its reserves are practically inexhaustible.

Biological wizardry ferments carbon monoxide into biofuel
July 26, 2016 02:27 PM - Cornell University via EurekAlert!

Cornell University biological engineers have deciphered the cellular strategy to make the biofuel ethanol, using an anaerobic microbe feeding on carbon monoxide - a common industrial waste gas.

"Instead of having the waste go to waste, you make it into something you want," said Ludmilla Aristilde, assistant professor in biological and environmental engineering. "In order to make the microbes do our work, we had to figure out how they work, their metabolism."

Aristilde collaborated with her colleague Lars Angenent, professor of biological and environmental engineering, on the project. She explained, "The Angenent group had taken a waste product and turned it into a useful product."

To make biofuel from inorganic, gaseous industrial rubbish, the researchers learned that the bacterium Clostridium ljungdahlii responds thermodynamically - rather than genetically - in the process of tuning favorable enzymatic reactions.

Lonely atoms, happily reunited
July 26, 2016 11:28 AM - Vienna University of Technology via EurekAlert!

At first glance, magnetite appears to be a rather inconspicuous grey mineral. But on an atomic scale, it has remarkable properties: on magnetite, single metal atoms are held in place, or they can be made to move across the surface. Sometimes several metal atoms on magnetite form small clusters. Such phenomena can dramatically change the chemical activity of the material. Atomic processes on the magnetite surface determine how well certain metal atoms can serve as catalysts for chemical reactions.

Scientists at TU Wien (Vienna), together with colleagues from Utrecht University, can now watch single platinum atoms form tiny clusters. Carbon monoxide plays a dual role in this process: It allows single platinum atoms to move and form pairs, and then it holds these pairs together for a long time. Only by increasing the temperature can the pair-bonds between platinum atoms can be broken.

First | Previous | 1 | 2 | 3 | 4 | 5 | Next | Last