From: Andrew Curry, Science AAAS
Published May 3, 2010 09:18 AM

Scientists Resurrect Mammoth Hemoglobin

By inserting a 43,000-year-old woolly mammoth gene into Escherichia coli bacteria, scientists have figured out how these ancient beasts adapted to the subzero temperatures of prehistoric Siberia and North America. The gene, which codes for the oxygen-transporting protein hemoglobin, allowed the animals to keep their tissues supplied with oxygen even at very low temperatures. "It's no different from going back 40,000 years and taking a blood sample from a living mammoth," says Kevin Campbell, a biologist at the University of Manitoba in Canada.


Campbell's team obtained DNA from mammoth bone preserved in the Siberian permafrost. It was a long journey for Campbell, whose specialty is the physiology of mammals. A decade ago, he saw a Discovery Channel program on the recovery of a mammoth specimen encased in ice and wondered if such specimens might hold clues to the physiology of the mammoth.

Campbell worked with DNA expert Alan Cooper of the University of Adelaide in Australia to isolate the mammoth gene responsible for hemoglobin. Then, he and colleagues plugged the gene into E. coli. The goal, says Campbell, was to make the bacteria produce mammoth hemoglobin in the lab. (A similar process is used to synthesize human proteins like insulin.) Although they were created in a bacterium, he says, the hemoglobin proteins are identical to what mammoth cells would have produced. "I figured if E. coli can make perfect human hemoglobin, why can't it make mammoth hemoglobin?"

Once the researchers had their mammoth hemoglobin, they compared it with that from Asian and African elephants (also created in the lab using genes from living animals spliced into E. coli). The elephant hemoglobin functioned much like human hemoglobin, delivering oxygen more efficiently at warmer temperatures. That helps the hemoglobin transport oxygen to the hardest-working muscles. But the mammoth hemoglobin released oxygen at a steady rate regardless of the temperature, the team reports online today in Nature Genetics.

Those differences help explain how the mammoth was able to adapt to frigid temperatures as it evolved from its elephantlike African ancestor over tens of millions of years. In addition to tiny ears and thick wool, Campbell suggests that mammoths may have developed ways to let their limbs and extremities cool dramatically to save energy and conserve their body's core temperature, a physiological trick used by cold-adapted modern animals such as reindeer and muskoxen. But cold feet present a problem when it comes to hemoglobin. "What the mammoth evolved is changes in hemoglobin that reduce the amount of heat needed to exchange oxygen," Campbell says, which allowed the animals to keep their extremities "breathing" even at very low temperatures.

Article continues:

Terms of Use | Privacy Policy

2015©. Copyright Environmental News Network