
Slow wi-fi is a source of irritation that nearly everyone experiences. Wireless devices in the home consume ever more data, and it’s only growing, and congesting the wi-fi network. Researchers at Eindhoven University of Technology have come up with a surprising solution: a wireless network based on harmless infrared rays. The capacity is not only huge (more than 40Gbit/s per ray) but also there is no need to share since every device gets its own ray of light. This was the subject for which TU/e researcher Joanne Oh received her PhD degree with the ‘cum laude’ distinction last week.
>> Read the Full Article

Three researchers at the University of Regina have been awarded a provincial research grant to study the role of agricultural dugouts in greenhouse gas capture.
Dr. Kerri Finlay, Dr. Peter Leavitt, Dr. Gavin Simpson of the biology department, along with Dr. Helen Baulch of the University of Saskatchewan, were recently awarded $255,030 from the Saskatchewan Ministry of Agriculture's Agriculture Development Fund.
>> Read the Full Article

The first global, long-term satellite study of airborne ammonia gas has revealed “hotspots” of the pollutant over four of the world’s most productive agricultural regions. The results of the study, conducted using data from NASA’s Atmospheric Infrared Sounder (AIRS) instrument on NASA’s Aqua satellite, could inform the development of strategies to control pollution from ammonia and ammonia byproducts in Earth’s agricultural areas.
A University of Maryland-led team discovered steadily increasing ammonia concentrations from 2002 to 2016 over agricultural centers in the United States, Europe, China and India. Increased concentrations of atmospheric ammonia are linked to poor air and water quality.
>> Read the Full Article

The oceans are great at absorbing carbon dioxide (CO2) from the air, but when their deep waters are brought to the surface, the oceans themselves can be a source of this prevalent greenhouse gas.
Wind patterns together with the Earth’s rotation drive deep ocean water — and the CO2 it sequesters — upward, replacing surface water moving offshore. A process known as upwelling, it occurs on the west coasts of continents. And it’s part of a never-ending loop in which CO2 levels in the surface ocean rise and fall in a natural rhythm.
>> Read the Full Article