
At the same time the pH of the surface waters in these oceans decreased, making them more acidic. Both of these findings imply changes in ocean circulation and primary productivity as a result of natural climate changes of the time. The findings were recently published in Nature Communications.
Oceans changed function
Today the cold Arctic and Nordic Seas are especially efficient areas for uptake of CO2 from the atmosphere. The oceans have been capable of mitigating some of the increase in greenhouse gas release resulting from human activities such as combustion of fossil fuels, by absorbing about 40% of the emitted CO2
“Our research shows that areas in Norwegian Sea had changed their function on several occasions through the past 135 000 years: Instead of absorbing CO2 from the air, they released more of the greenhouse gas into it.” says first author of the study Mohamed Ezat from Centre of Arctic Gas Hydrate, Environment and Climate (CAGE), Department of Geosciences at UiT The Arctic University of Norway.
>> Read the Full Article

The Global Precipitation Measurement mission or GPM constellation of satellites provide data on precipitation rates and totals. Recently the GPM core observatory measured the heavy rainfall that caused extensive flooding and loss of life in Peru.
Extreme flooding and frequent landslides that occurred in March have forced many from their homes. An El Niño-like condition with warm ocean waters developed near Peru's coast. This extremely warm water off Peru's western coast has been blamed for promoting the development of these storms. Equatorial sea surface temperatures (SSTs) are about average elsewhere in the central and east central Pacific.
>> Read the Full Article

A biologist from The University of Texas at Arlington is leading a new study aimed at quantifying how susceptible coral species are to disease by examining their immunity through a series of novel experiments and approaches.
Laura Mydlarz, associate professor of biology, is principal investigator of the project, titled “Immunity to Community: Can Quantifying Immune Traits Inform Reef Community Structure?” and funded by a two-year, $220,331 grant from the National Science Foundation’s Division of Ocean Sciences. Co-principal investigators are Marilyn Brandt, research associate professor of marine and environmental science at the University of the Virgin Islands, and Erinn Muller, staff scientist at the Mote Marine Laboratory and Aquarium in Sarasota, Fla.
>> Read the Full Article

Tests conducted this week of a novel technology that can greatly accelerate the combustion of crude oil floating on water demonstrated its potential to become an effective tool for minimizing the environmental impact of future oil spills. Called the Flame Refluxer, the technology, developed by fire protection engineering researchers at Worcester Polytechnic Institute (WPI) with funding from the Bureau of Safety and Environmental Enforcement (BSEE), could make it possible to burn off spilled oil quickly while producing relatively low levels of air pollutants.
The tests of the Flame Refluxer were conducted this week by WPI and BSEE at the United States Coast Guard’s Joint Maritime Test Facility on Little Sand Island, located in Mobile Bay. WPI is the first university to work on research at the facility since it reopened in 2015. The tests involved controlled burns of oil in a specially designed test tank on the island.
>> Read the Full Article