Top Stories

Once invincible superbug squashed by 'superteam' of antibiotics

The recent discovery of E. coli carrying mcr-1 and ndm-5 — genes that make the bacterium immune to last-resort antibiotics — has left clinicians without an effective means of treatment for the superbug.

But in a new study, University at Buffalo researchers have assembled a team of three antibiotics that, together, are capable of eradicating the deadly bacterium. The groundbreaking research was recently published in mBio, a journal for the American Society of Microbiology.

>> Read the Full Article

How cytoplasm ''feels'' to a cell's components

Under a microscope, a cell’s cytoplasm can resemble a tiny underwater version of New York’s Times Square: Thousands of proteins swarm through a cytoplasm’s watery environment, coming together and breaking apart like a cytoskeletal flash mob.

Organelles such as mitochondria and lysosomes must traverse this crowded, ever-changing cytoplasmic space to deliver materials to various parts of a cell.

Now engineers at MIT have found that these organelles and other intracellular components may experience the surrounding cytoplasm as very different environments as they travel. For instance, a cell’s nucleus may “feel” the cytoplasm as a fluid, honey-like material, while mitochondria may experience it more like toothpaste.

>> Read the Full Article

Hidden river once flowed beneath Antarctic ice

Antarctic researchers from Rice University have discovered one of nature’s supreme ironies: On Earth’s driest, coldest continent, where surface water rarely exists, flowing liquid water below the ice appears to play a pivotal role in determining the fate of Antarctic ice streams.

The finding, which appears online this week in Nature Geoscience, follows a two-year analysis of sediment cores and precise seafloor maps covering 2,700 square miles of the western Ross Sea. As recently as 15,000 years ago, the area was covered by thick ice that later retreated hundreds of miles inland to its current location. The maps, which were created from state-of-the-art sonar data collected by the National Science Foundation research vessel Nathaniel B. Palmer, revealed how the ice retreated during a period of global warming after Earth’s last ice age. In several places, the maps show ancient water courses — not just a river system, but also the subglacial lakes that fed it.

>> Read the Full Article

How high is air pollution in your city and how does it compare to the most polluted cities in the world?

Pollution is a greater global threat than Ebola and HIV, according to warnings by the World Health Organisation. 

According to its recent report, one in four deaths among children aged under five are now due to environmental hazards such as air pollution and contaminated water.

Previously this year, air pollution levels in London were worse than those in Beijing for a brief period - with the UK capital's pollutants frequently breaking UK limits. 

>> Read the Full Article

The World Eyes Yet Another Unconventional Source of Fossil Fuels

In May of this year, China claimed a breakthrough in tapping an obscure fossil fuel resource: Researchers there managed to suck a steady flow of methane gas out of frozen mud on the seafloor. That same month, Japan did the same. And in the United States, researchers pulled a core of muddy, methane-soaked ice from the bottom of the Gulf of Mexico.

The idea of exploiting this quirky fuel source would have been considered madness a couple of decades ago — both wildly expensive and dangerous. Until recently, methane-soaked ice was considered explosively unstable. In the Gulf of Mexico, traditional oil rigs have been tiptoeing around these icy deposits for years, trying to avoid them.

>> Read the Full Article

Hot spot at Hawaii? Not so fast

Through analysis of volcanic tracks, Rice University geophysicists have concluded that hot spots like those that formed the Hawaiian Islands aren’t moving as fast as recently thought.

Hot spots are areas where magma pushes up from deep Earth to form volcanoes. New results from geophysicist Richard Gordon and his team confirm that groups of hot spots around the globe can be used to determine how fast tectonic plates move.

Gordon, lead author Chengzu Wang and co-author Tuo Zhang developed a method to analyze the relative motion of 56 hot spots grouped by tectonic plates. They concluded that the hot-spot groups move slowly enough to be used as a global reference frame for how plates move relative to the deep mantle. This confirmed the method is useful for viewing not only current plate motion but also plate motion in the geologic past.

>> Read the Full Article

Destruction of small wetlands directly linked to algal blooms in Great Lakes

Canada’s current wetland protection efforts have overlooked how the environment naturally protects fresh-water resources from agricultural fertilizer contaminants, researchers from the University of Waterloo have found.

In a recent study, researchers at Waterloo’s Faculty of Science and Faculty of Engineering found that small wetlands have a more significant role to play than larger ones in preventing excess nutrients like nitrogen and phosphorus from fertilizer from reaching waterbodies such as the Great Lakes.

>> Read the Full Article

Slippery liquid surfaces confuse mussels to stop them from sticking to underwater structures

Non-toxic, lubricant-infused coatings deter mussels and prevent their attachment by disrupting their mechanosensory and adhesive systems.

>> Read the Full Article

Genome analysis with near-complete privacy possible

It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

This “genome cloaking” technique, devised by biologists, computer scientists and cryptographers at the university, ameliorates many concerns about genomic privacy and potential discrimination based on an individual’s genome sequence.

>> Read the Full Article

Allergies: cross-reactivity between cypress pollen and peaches/citrus fruits finally explained

Researchers have identified, for the first time, the likely origin of the cross-reactivity between cypress pollen, peaches and citrus fruits.

>> Read the Full Article