Top Stories

Extreme weather has greater impact on nature than assumed

An oystercatcher nest is washed away in a storm surge. Australian passerine birds die during a heatwave. A late frost in their breeding area kills off a group of American cliff swallows. Small tragedies that may seem unrelated, but point to the underlying long-term impact of extreme climatic events. In the special June issue of Philosophical Transactions of the Royal Society B researchers of the Netherlands Institute of Ecology (NIOO-KNAW) launch a new approach to these 'extreme' studies.

>> Read the Full Article

Study solves mystery of how plants use sunlight to tell time via cell protein signaling

Findings of a new study solve a key mystery about the chemistry of how plants tell time so they can flower and metabolize nutrients.

>> Read the Full Article

NASA Aims to Create First-Ever Space-Based Sodium Lidar to Study Poorly Understood Mesosphere

A team of NASA scientists and engineers now believes it can leverage recent advances in a greenhouse-detecting instrument to build the world’s first space-based sodium lidar to study Earth’s poorly understood mesosphere.

Scientist Diego Janches and laser experts Mike Krainak and Tony Yu, all of whom work at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are leading a research-and-development effort to further advance the sodium lidar, which the group plans to deploy on the International Space Station if it succeeds in proving its flightworthiness.

NASA’s Center Innovation Fund and the Heliophysics Technology and Instrument Development for Science programs are now funding the instrument’s maturation. However, the concept traces its heritage in part to NASA’s past investments in promising lidar instruments, called Sounders, originally created to measure carbon dioxide and methane in Earth’s atmosphere.

>> Read the Full Article

Researchers make waves in the ultrasound world

A team of Ryerson researchers, led by Scott Tsai, have developed a new method to create the uniformly minuscule microbubbles most desirable for use in ultrasound imaging.

>> Read the Full Article

Varied increases in extreme rainfall with global warming

A new study by researchers from MIT and the Swiss Federal Institute of Technology in Zurich shows that the most extreme rain events in most regions of the world will increase in intensity by 3 to 15 percent, depending on region, for every degree Celsius that the planet warms.

>> Read the Full Article

Wild Weather and Climate Change: Scientists Are Unraveling the Links

Southeast Australia just had its hottest summer on record: temperatures in some areas hit 35 degrees C (95 degrees F) more than 50 days in a row. And climate change, researchers with the World Weather Attribution project have been able to say, was probably to blame. Average temperatures like those in the 2016/17 Australian summer are now 50 times more likely than before global warming began.

>> Read the Full Article

More genes turned on when plants compete

Some people travel to northern California for wine. However, Maren Friesen, Michigan State University plant biologist, treks to the Golden State for clover.

>> Read the Full Article

Migratory birds bumped off schedule as climate change shifts spring

New research shows climate change is altering the delicate seasonal clock that North American migratory songbirds rely on to successfully mate and raise healthy offspring, setting in motion a domino effect that could threaten the survival of many familiar backyard bird species.

>> Read the Full Article

Gladiator Games: In Nature's Showdowns, Biodiversity Shields Weaker Competitors

If you pit a pair of gladiators, one strong and one weak, against each other 10 times the outcome will likely be the same every time: the stronger competitor will defeat the weak. But if you add into the field additional competitors of varying strength levels, even the weakest competitors might be able to survive — if only because they’re able to find a quiet corner to hide.

>> Read the Full Article

Producing fertilizer from air could be five times as efficient

African farmers who are able to produce their own fertilizer from only air. Bhaskar S. Patil brings this prospect closer with a revolutionary reactor that coverts nitrogen from the atmosphere into NOx, the raw material for fertilizer. His method, in theory, is up to five times as efficient as existing processes, enabling farms to have a small-scale installation without the need for a big investment. He receives his doctorate on 10 May at Eindhoven University of Technology (TU/e).
The production of one of the key raw materials for fertilizer, ammonia (NH3) or nitrogen oxide (NOx), is a very energy-intensive process that is responsible for about 2% of all global CO2 emissions. However, it is hardly possible any longer to cut the energy consumption via current production processes since the theoretically minimal feasible energy consumption has already been more or less reached.

>> Read the Full Article