Top Stories

Team discovers a new invasive clam in the U.S.

They found it in the Illinois River near the city of Marseilles, Illinois, about 80 miles west of Lake Michigan – a strange entry point for an invasive Asian clam. The scientists who found it have no idea how it got there. But the discovery – along with genetic tests that confirm its uniqueness – means that a new species or “form” of invasive clam has made its official debut in North America.

The researchers report the find in the journal BioInvasions Records.

>> Read the Full Article

Shunned by microbes, organic carbon can resist breakdown in underground environments, Stanford scientists say

The soils and sediments beneath our feet can contain an astonishing amount of carbon – more than in all of the world’s plants and the atmosphere combined – and represents a significant potential source of the greenhouse gas carbon dioxide.

In a new study, Stanford scientists have uncovered a previously unknown mechanism that explains why microbes sometimes fail to break down all the plant and animal matter, leaving carbon underfoot. Understanding where, and how long, this buried organic matter lingers is crucial for scientists and policymakers to better predict and respond to climate change.

>> Read the Full Article

Scientists Find Real-time Evidence of Morphological Changes of Dust Particles due to Internally Mixing with Pollution

Frequent occurrence of both anthropogenic pollution and natural dust in East Asian imposes great impact on regional air quality, human health and climate. Till now, their interaction and consequent effect on the dust morphology remain statistically unclear because even though traditional filter-based bulk sampling method can provide accurate chemical compounds, it cannot distinguish the mixing state of chemicals with dust particles.  

>> Read the Full Article

Research shows black licorice packs a potent punch

Black licorice. You either love it – or you hate it. But one Western researcher is offering a reason to pass the next time you think about reaching for that black licorice jelly bean, twist or whip – your health.

>> Read the Full Article

Fifty years ago, a historic balloon launch that changed the way we see the ozone layer

From atop this grassy mesa in 1967, scientists with the federal Environmental Science Services Agency carefully launched a weather balloon carrying a new instrument that could measure ozone levels from the ground to the very edge of outer space -- and radio the data back to a ground receiver.

>> Read the Full Article

When bridges collapse: Stanford researchers study whether we're underestimating the risk

The United States is considering a $1 trillion budget proposal to update infrastructure, including its crumbling bridges. An obstacle to spending the money wisely is that the current means of assessing bridges may underestimate their vulnerability, according to a new study published in the Journal of Infrastructure Systems. 

Case in point is a bridge along California’s iconic Big Sur coast, which collapsed in March, isolating communities and costing local businesses millions of dollars. Although California’s recent unprecedented rains were likely to damage infrastructure, standard risk assessments made it hard to identify which bridges were most vulnerable.

>> Read the Full Article

Hybrid Digital-Analog Circuits Can Increase Computational Power of Chaos-Based Systems

New research from North Carolina State University has found that combining digital and analog components in nonlinear, chaos-based integrated circuits can improve their computational power by enabling processing of a larger number of inputs. This “best of both worlds” approach could lead to circuits that can perform more computations without increasing their physical size.

Computer scientists and designers are struggling to keep up with Moore’s law, which states that the number of transistors on an integrated circuit will double every two years in order to meet processing demands. They are rapidly reaching the limits of physics in terms of transistor size – it isn’t possible to continue shrinking the transistors to fit more on a chip.

>> Read the Full Article

Long-term fate of tropical forests may not be so dire

Tropical rainforests are often described as the “lungs of the earth,” able to essentially inhale carbon dioxide from the atmosphere and exhale oxygen in return. The faster they grow, the more they mitigate climate change by absorbing CO2.

This role has made them a hot research topic, as scientists question what will happen to this vital carbon sink long-term as temperatures rise and rainfall increases.

Conventional wisdom has held that forest growth will dramatically slow with high levels of rainfall. But CU Boulder researchers this month turned that assumption on its head with an unprecedented review of data from 150 forests that concluded just the opposite.

>> Read the Full Article

Ultracold atom waves may shed light on rogue ocean killers

By precisely controlling the quantum behavior of an ultracold atomic gas, Rice University physicists have created a model system for studying the wave phenomenon that may bring about rogue waves in Earth’s oceans.

The research appears this week in Science. The researchers said their experimental system could provide clues about the underlying physics of rogue waves — 100-foot walls of water that are the stuff of sailing lore but were only confirmed scientifically within the past two decades. Recent research has found rogue waves, which can severely damage and sink even the largest ships, may be more common than previously believed.

>> Read the Full Article

Wildfire in a Warming Climate Could Relegate Some Forests to Shrubland

The ability of some Western conifer forests to recover after severe fire may become increasingly limited as the climate continues to warm, according to a new study published today in Global Change Biology, by ?HF Senior Ecologist Jonathan Thompson and fellow scientists from the Smithsonian Conservation Biology Institute (SCBI) and UVA.

Although most of the evergreen trees in the study region are well adapted to fire, the study examined whether two likely facets of climate change — hotter, drier conditions and larger, more frequent and severe wildfires — could potentially transform landscapes from forested to shrub-dominated systems.

>> Read the Full Article