Carbon Release to Atmosphere 10 Times Faster Than in the Past

Typography
The rate of release of carbon into the atmosphere today is nearly 10 times as fast as during the Paleocene-Eocene Thermal Maximum (PETM), 55.9 million years ago, the best analog we have for current global warming, according to an international team of geologists. Rate matters and this current rapid change may not allow sufficient time for the biological environment to adjust. "We looked at the PETM because it is thought to be the best ancient analog for future climate change caused by fossil fuel burning," said Lee R. Kump, professor of geosciences, Penn State. However, the researchers note in the current issue of Nature Geoscience, that the source of the carbon, the rate of emission and the total amount of carbon involved in this event during the PETM are poorly characterized.

The rate of release of carbon into the atmosphere today is nearly 10 times as fast as during the Paleocene-Eocene Thermal Maximum (PETM), 55.9 million years ago, the best analog we have for current global warming, according to an international team of geologists. Rate matters and this current rapid change may not allow sufficient time for the biological environment to adjust.

!ADVERTISEMENT!

"We looked at the PETM because it is thought to be the best ancient analog for future climate change caused by fossil fuel burning," said Lee R. Kump, professor of geosciences, Penn State.

However, the researchers note in the current issue of Nature Geoscience, that the source of the carbon, the rate of emission and the total amount of carbon involved in this event during the PETM are poorly characterized.

Investigations of the PETM are usually done using core samples from areas that were deep sea bottom 55.9 million years ago. These cores contain layers of calcium carbonate from marine animals that can show whether the carbon in the carbonate came from organic or inorganic sources. Unfortunately, when large amounts of greenhouse gases --carbon dioxide or methane -- are in the atmosphere, the oceans become more acidic, and acid dissolves calcium carbonate.

"We were concerned with the fidelity of the deep sea records," said Kump. "How do we determine the rate of change of atmospheric carbon if the record is incomplete? The incomplete record makes the warming appear more abrupt."

Article continues: http://www.sciencedaily.com/releases/2011/06/110605132433.htm