'Extreme' Telescopes Find the Second-fastest-spinning Pulsar

Typography

By following up on mysterious high-energy sources mapped out by NASA's Fermi Gamma-ray Space Telescope, the Netherlands-based Low Frequency Array (LOFAR) radio telescope has identified a pulsar spinning at more than 42,000 revolutions per minute, making it the second-fastest known.

By following up on mysterious high-energy sources mapped out by NASA's Fermi Gamma-ray Space Telescope, the Netherlands-based Low Frequency Array (LOFAR) radio telescope has identified a pulsar spinning at more than 42,000 revolutions per minute, making it the second-fastest known.

A pulsar is the core of a massive star that exploded as a supernova. In this stellar remnant, also called a neutron star, the equivalent mass of half a million Earths is crushed into a magnetized, spinning ball no larger than Washington, D.C. The rotating magnetic field powers beams of radio waves, visible light, X-rays and gamma rays. If a beam happens to sweep across Earth, astronomers observe regular pulses of emission and classify the object as a pulsar.

"Roughly a third of the gamma-ray sources found by Fermi have not been detected at other wavelengths," said Elizabeth Ferrara, a member of the discovery team at NASA's Goddard Space Center in Greenbelt, Maryland. "Many of these unassociated sources may be pulsars, but we often need follow-up from radio observatories to detect the pulses and prove it. There's a real synergy across the extreme ends of the electromagnetic spectrum in hunting for them."

The new object, named PSR J0952–0607 — or J0952 for short — is classified as a millisecond pulsarand is located between 3,200 and 5,700 light-years away in the constellation Sextans. The pulsar contains about 1.4 times the sun's mass and is orbited every 6.4 hours by a companion star that has been whittled away to less than 20 times the mass of the planet Jupiter. The scientists report their findings in a paper published in the Sept. 10 issue of The Astrophysical Journal Letters and now available online.

Read more at NASA/Goddard Space Flight Center

Image: The Low-Frequency Array (LOFAR), a network of thousands of linked radio antennas, primarily located in the Netherlands, has discovered two new millisecond pulsars by investigating previously unknown gamma-ray sources uncovered by NASA's Fermi Gamma-ray Space Telescope. Pulsar J0952-0607, highlighted near center right, rotates 707 times a second and now ranks as second-fastest pulsar known. The location of LOFAR's first millisecond pulsar discovery, J1552+5437, which spins 412 times a second, is shown at upper left. Radio emission from both pulsars dims quickly at higher radio frequencies, making them ideally suited for LOFAR. The top of this composite image shows a portion of the gamma-ray sky as seen by Fermi. At the bottom is the LOFAR "superterp" near Exloo, the Netherlands, which houses the facility's core antenna stations. (Credit: NASA/DOE/Fermi LAT Collaboration and ASTRON)