A Growing Baby Planet Photographed for First Time in a Ring of Darkness

Typography

A team of astronomers has detected for the first time a growing planet outside our solar system, embedded in a cleared gap of a multi-ringed disk of dust and gas.

A team of astronomers has detected for the first time a growing planet outside our solar system, embedded in a cleared gap of a multi-ringed disk of dust and gas.

The team, led by University of Arizona astronomer Laird Close and Richelle van Capelleveen, an astronomy graduate student at Leiden Observatory in the Netherlands, discovered the unique exoplanet using the University of Arizona's MagAO-X extreme adaptive optics system at the Magellan Telescope in Chile, the U of A's Large Binocular Telescope in Arizona and the Very Large Telescope at the European Southern Observatory in Chile. Their results are published in The Astrophysical Journal Letters.

For years, astronomers have observed several dozen planet-forming disks of gas and dust surrounding young stars. Many of these disks display gaps in their rings, hinting at the possibility that they are being "plowed" by nearby nascent planets, or protoplanets, like lanes being cleared by a snowplow. Yet, only about three actual young growing protoplanets have been discovered to date, all in the cavities between a host star and the inner edge of its adjacent protoplanetary disk. Until this discovery, no protoplanets had been seen in the conspicuous disk gaps – which appear as dark rings.

"Dozens of theory papers have been written about these observed disk gaps being caused by protoplanets, but no one's ever found a definitive one until today," said Close, professor of astronomy at the University of Arizona. He calls the discovery a "big deal," because the absence of planet discoveries in places where they should be has prompted many in the scientific community to invoke alternative explanations for the ring-and-gap pattern found in many protoplanetary disks.

Read More: University of Arizona

Image: The WISPIT 2 system as seen by the Magellan Telescope in Chile and the Large Binocular Telescope in Arizona. The protoplanet WISPIT 2b appears as a purple dot in a dust-free gap between a bright, white dust ring around the star and a fainter, outer ring, orbiting at about 56 times the average distance between the Earth and the sun. The other potential planet, CC1, appears as the red object inside the dust free cavity and is estimated to be about 15 Earth-sun distances from its host star. (Credit: Laird Close, University of Arizona)