24
Sat, Feb

Solar eclipse caused bow waves in Earth's atmosphere

Typography

The celebrated Great American Eclipse of August 2017 crossed the continental U.S. in 90 minutes, and totality lasted no longer than a few minutes at any one location. The event is well in the rear-view mirror now, but scientific investigation into the effects of the moon's shadow on the Earth's atmosphere is still being hotly pursued, and interesting new findings are surfacing at a rapid pace. These include significant observations by scientists at MIT’s Haystack Observatory in Westford, Massachusetts.

The celebrated Great American Eclipse of August 2017 crossed the continental U.S. in 90 minutes, and totality lasted no longer than a few minutes at any one location. The event is well in the rear-view mirror now, but scientific investigation into the effects of the moon's shadow on the Earth's atmosphere is still being hotly pursued, and interesting new findings are surfacing at a rapid pace. These include significant observations by scientists at MIT’s Haystack Observatory in Westford, Massachusetts.

Eclipses are not particularly rare, but it is unusual for one to cross the entire continental U.S. as happened in August. By studying an eclipse’s effects on the electron content of the upper atmosphere, scientists are learning more about how our planet's complex and interlocked atmosphere responds to space weather events, such as solar flares and coronal mass ejections, that can have severe effects on signal information and communication paths, and can impact navigation and positioning services.

The ionosphere is the layer of the atmosphere containing charged particles created primarily by solar radiation. It allows long-distance radio wave propagation and communication over the horizon and affects essential satellite-based transmissions in navigation systems and on-board aircraft. Since the ionosphere is the medium in which radio waves travel and is affected by solar variations, understanding its features is important for our modern technological society. The ionosphere is host to a huge number of naturally occurring waves, from small to large in size and strength, and eclipse shadows in particular can leave behind a large number of newly created waves as they travel across the planet.

Read more at Massachusetts Institute of Technology

Image: This graphic shows atmospheric bow waves forming during the August 2017 eclipse over the continental United States.

CREDIT: Shunrong Zhang / Haystack Observatory