New View Of How Ocean ‘Pumps’ Impact Climate Change

Typography

Earth’s oceans have a remarkable natural ability to pull carbon from the atmosphere and store it deep within the ocean waters, exerting an important control on the global climate.

 

Earth’s oceans have a remarkable natural ability to pull carbon from the atmosphere and store it deep within the ocean waters, exerting an important control on the global climate.

A large portion of the carbon dioxide emitted when humans burn fossil fuels, for instance, is taken up and stored in the ocean via a set of processes that make up the ocean carbon cycle. But, the rapid rate at which carbon dioxide emissions are increasing means the future of the cycle is uncertain, especially when many of the key processes remain poorly understood. In a new paper in the journal Nature, Tom Weber, an assistant professor of Earth and environmental sciences at Rochester, and his colleagues, outlined and quantified critical mechanisms involved in the ocean carbon cycle, specifically the “biological pump.” Their new insights can be used to guide climate computer models to better predict the effects of climate change on a warming world.

The biological pump describes the sum of all the biological processes that transfer carbon dioxide from the atmosphere to the deep ocean. Tiny marine plants, known as phytoplankton, take carbon dioxide from the surface ocean to produce biomass. The biomass clumps together into particles, which then sink to the deep ocean. In the deep ocean, the particles decompose, releasing carbon dioxide. “The net effect is the ‘pumping’ of CO2 from the atmosphere to the deep ocean,” Weber says.

 

Continue reading at University of Rochester.

Image via Getty Images.