Translating Nuclear Waste Site Data into Microbial Ecosystem Insights

Typography

A flagship seven-year study led by the University of Oklahoma that explores how environmental stresses influence different ecological processes shaping the composition and structure of microbial communities in groundwater has been published in the journal Nature Microbiology.

A flagship seven-year study led by the University of Oklahoma that explores how environmental stresses influence different ecological processes shaping the composition and structure of microbial communities in groundwater has been published in the journal Nature Microbiology.

Led by Jizhong Zhou, director of the Institute for Environmental Genomics at OU, this research focused on community assembly, which is about dynamic and complex processes that shape the composition and structure of microbial communities. Researchers use this concept to understand how different microbial species come to inhabit an environment, how they interact with each other and the environment, and how these interactions influence the overall functioning of the ecosystem.

“We analyzed more than 200 biogeochemical variables, observing nearly 29,000 groups of similar microorganisms, to theorize the relationships between community assembly processes and environmental stresses,” Zhou said. “We found that stochastic, or random, assembly processes were critical in shaping community structure, but their relative importance decreased as stress increased.”

The team collected groundwater samples from approximately 100 wells at the U.S. Department of Energy’s Oak Ridge Field Research Center, a former nuclear waste disposal site, and conducted comprehensive physical and chemical analyses, along with microbiome analyses.

Read more at University of Oklahoma