New discoveries about photosynthesis may lead to solar cells of the future

Typography

For the first time, researchers have successfully measured in detail the flow of solar energy, in and between different parts of a photosynthetic organism. The result is a first step in research that could ultimately contribute to the development of technologies that use solar energy far more efficiently than what is currently possible.

For about 80 years, researchers have known that photochemical reactions inside an organism do not occur in the same place as where it absorbs sunlight. What has not been known, however, is how and along what routes the solar energy is transported into the photosynthetic organism -- until now.

"Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion. That is why new knowledge about photosynthesis will become useful for the development of future solar technologies", says Donatas Zigmantas, Faculty of Science at Lund University, Sweden.

For the first time, researchers have successfully measured in detail the flow of solar energy, in and between different parts of a photosynthetic organism. The result is a first step in research that could ultimately contribute to the development of technologies that use solar energy far more efficiently than what is currently possible.

For about 80 years, researchers have known that photochemical reactions inside an organism do not occur in the same place as where it absorbs sunlight. What has not been known, however, is how and along what routes the solar energy is transported into the photosynthetic organism -- until now.

"Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion. That is why new knowledge about photosynthesis will become useful for the development of future solar technologies", says Donatas Zigmantas, Faculty of Science at Lund University, Sweden.

Together with his colleagues Jakub Dostál, Lund University, and Jakub Pšenčík, Charles University in Prague, Donatas Zigmantas has studied the photosynthesis of bacterial cells. Using ultrafast spectroscopy - a measurement method that uses light to study molecules etc. -- they were able to locate the routes along which solar energy is transported. The routes run both within and between the components of a photosynthetic cell. According to the researchers, their discovery demonstrates how the biological machinery is connected.

Read more: EurekAlert!

Image Credits: Ultrafast Laser Spectroscopy via Schlenker Group / University of Washington