From: NASA/Goddard Space Flight Center
Published November 17, 2017 12:36 PM

Taking a Spin on Plasma Space Tornadoes with NASA Observations

Interplanetary space is hardly tranquil. High-energy charged particles from the Sun, as well as from beyond our solar system, constantly whizz by. These can damage satellites and endanger astronaut health — though, luckily for life on Earth, the planet is blanketed by a protective magnetic bubble created by its magnetic field. This bubble, called the magnetosphere, deflects most of the harmful high-energy particles.

Nevertheless, some sneak through — and at the forefront of figuring out just how this happens is NASA’s Magnetospheric Multiscale mission, or MMS. New results show that tornado-like swirls of space plasma create a boundary tumultuous enough to let particles slip into near Earth space.

MMS, launched in 2015, uses four identical spacecraft flying in a pyramid formation to take a three-dimensional look at the magnetic environment around Earth. The mission studies how particles transfer into the magnetosphere by focusing on the causes and effects of magnetic reconnection — an explosive event where magnetic field lines cross, launching electrons and ions from the solar wind into the magnetosphere.

By combining observations from MMS with new 3-D computer simulations, scientists have been able to investigate the small-scale physics of what’s happening at our magnetosphere’s borders for the first time. The results, recently published in a paper in Nature Communications, are key for understanding how the solar wind sometimes enters Earth’s magnetosphere, where it can interfere with satellites and GPS communications.

Read more at NASA/Goddard Space Flight Center

Image: Kelvin-Helmholtz waves, with their classic surfer's wave shape, are found in nature wherever two fluids meet, such as in these clouds. (Credit: Danny Ratcliffe)

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network