From: Andy Soos, ENN
Published October 19, 2011 09:35 AM

Enceladus View

In 2005 the Cassini spacecraft performed several close flybys of Enceladus, revealing the moon's surface and environment in greater detail. In particular, the probe discovered a water-rich plume venting from the moon's south polar region. This discovery, along with the presence of escaping internal heat and very few (if any) impact craters in the south polar region, shows that Enceladus is geologically active today. Moons in the extensive satellite systems of gas giants often become trapped in orbital resonances that lead to forced libration or orbital eccentricity; proximity to the planet can then lead to tidal heating of the satellite's interior, offering a possible explanation for the activity. NASA's Cassini mission will take advantage of the position of two of the three stars in Orion's belt when the spacecraft flies by Saturn's moon Enceladus on Wed., Oct. 19. As the hot, bright stars pass behind the moon's icy jets, Cassini's ultraviolet imaging spectrograph will acquire a two-dimensional view of these dramatic plumes of water vapor and icy material erupting from the moon's southern polar region. This flyby is the mission's first-ever opportunity to probe the jets with two stars simultaneously, a dual stellar occultation.


Enceladus is one of only three outer solar system bodies (along with Jupiter's moon Io and Neptune's moon Triton) where active eruptions have been observed. Analysis of the outgassing suggests that it originates from a body of sub-surface liquid water, which along with the unique chemistry found in the plume, has fueled speculations that Enceladus may be important in the study of astrobiology. The discovery of the plume has added further weight to the argument that material released from Enceladus is the source of the E ring.

From Cassini's viewpoint, the closest of Orion's stars will appear about 9 miles (15 kilometers) above the moon's limb, or outer edge. The second star will appear higher, about 19 miles (30 kilometers) from the limb. In the foreground will be Enceladus' icy plumes, which extend hundreds of miles into space.

As the spacecraft passes Enceladus, its infrared instruments, cameras and other instruments will also be monitoring activity on the moon. The orbiter will fly within about 765 miles (1,230 kilometers) of Enceladus' surface.

Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. The tiger stripes are fissures that spray icy particles, water vapor and organic compounds.

More than 30 individual jets of different sizes can be seen in accompanying image and more than 20 of them had not been identified before. At least one jet spouting prominently in previous images now appears less powerful.

This flyby will provide researchers with new insight into the jets--their content, the speed at which they are traveling and how they vary. These fissures in Enceladus' surface are the "nozzles" from which the plumes are propelled at supersonic speeds. Knowing more about their structure may help unlock some of the secrets within Enceladus' interior, including the source of the water-rich plumes.

For further information:


Terms of Use | Privacy Policy

2014©. Copyright Environmental News Network