Iowa State engineer helps journal highlight how pyrolysis can advance the bioeconomy

Typography

A special issue of the journal Energy Technology details the latest advances in pyrolysis technologies for converting biomass into fuels, chemicals and fertilizers.

Two pyrolysis experts are guest editors of the issue: Robert C. Brown, the director of Iowa State University’s Bioeconomy Institute, an Anson Marston Distinguished Professor in Engineering and the Gary and Donna Hoover Chair in Mechanical Engineering; and George Huber, the University of Wisconsin-Madison’s Harvey D. Spangler Professor of Chemical and Biological Engineering.

A special issue of the journal Energy Technology details the latest advances in pyrolysis technologies for converting biomass into fuels, chemicals and fertilizers.

Two pyrolysis experts are guest editors of the issue: Robert C. Brown, the director of Iowa State University’s Bioeconomy Institute, an Anson Marston Distinguished Professor in Engineering and the Gary and Donna Hoover Chair in Mechanical Engineering; and George Huber, the University of Wisconsin-Madison’s Harvey D. Spangler Professor of Chemical and Biological Engineering.

“The purpose of this special issue is to highlight recent advances in pyrolysis technologies and to discuss the critical research needs of this field,” Brown and Huber wrote in an editorial summarizing the issue. “We think innovations in pyrolysis will advance more rapidly with improved understanding of the fundamental chemical, physical, and catalytic processes underlying pyrolysis technology.”

The special issue is available online.

Fast pyrolysis as traditionally practiced involves quickly heating biomass without oxygen to produce a biochar for fertilizer and a liquid bio-oil for energy. That bio-oil is the cheapest liquid fuel from biomass today, but it must be upgraded and its oxygen content reduced to produce higher-value fuels and chemicals.

And so, Brown and Huber wrote in their editorial, “To achieve the full benefits of pyrolysis technologies, several advancements must be made to better improve the quality of pyrolysis products and the overall efficiency of the process.”

Continue reading at Iowa State University

Photo by Robert Mills / Bioeconomy Institute