From: University of Miami Rosenstiel School of Marine and Atmospheric Science
Published May 5, 2017 09:23 AM

New Technology Measures Small-Scale Currents that Transport Ocean Plastics, Oil Spills

Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science have developed a new technology to measure the currents near the ocean’s surface that carry pollutants such as plastics and spilled oil.

This new technique, which includes a specialized video camera to remotely sense currents in the upper few centimeters of the water column, can help scientists more accurately predict the fate of spilled oil or other marine pollutants that are transported at the surface layer by providing these measurements that were previously unattainable.

“The health and economic impacts of spilled oil and marine debris have the potential to be profoundly negative,” said UM Rosenstiel School postdoctoral researcher Nathan Laxague, and lead author of the study. “Improving our ability to measure near-surface ocean currents can aid in disaster response and provides for greater context in understanding the dynamics of marine pollutant transport.”

Laxague and colleagues conducted two experiments—one in a laboratory and one in the field at the mouth of the Columbia River—to test their new technique. In the laboratory study, the researchers imaged the water surface in the SUSTAIN (SUrge-STructure Atmosphere INteraction) facility using a specialized camera that simultaneously records three polarizations of reflected light off the ocean surface to determine the current profile for a range of wind speeds. In the field study, a research vessel was stationed in the mouth of the Columbia River along the Oregon-Washington border to verify the results from the lab experiment in a real-world setting.

Read more at University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science

Image: Figure adapted from Fig. 9 of paper. Comparison of currents estimated via camera tracking of dye (yellow for surface, violet for sub-surface) and through extraction from short wave spectra (green and blue represent two different depth assignment schemes, as described in paper). Brown 'oil' on right side is for reference only, representing the typical 1 micron -- 2 centimeter range of surface oil thickness. (Credit: N.J.M Laxague)

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network