From: Eindhoven University of Technology
Published May 15, 2017 01:15 PM

Producing fertilizer from air could be five times as efficient

African farmers who are able to produce their own fertilizer from only air. Bhaskar S. Patil brings this prospect closer with a revolutionary reactor that coverts nitrogen from the atmosphere into NOx, the raw material for fertilizer. His method, in theory, is up to five times as efficient as existing processes, enabling farms to have a small-scale installation without the need for a big investment. He receives his doctorate on 10 May at Eindhoven University of Technology (TU/e).
The production of one of the key raw materials for fertilizer, ammonia (NH3) or nitrogen oxide (NOx), is a very energy-intensive process that is responsible for about 2% of all global CO2 emissions. However, it is hardly possible any longer to cut the energy consumption via current production processes since the theoretically minimal feasible energy consumption has already been more or less reached.

Two types of reactor

So the Indian PhD candidate Patil sought alternative methods to produce ammonia and nitrogen oxides for his PhD research, building two types of reactor, the Gliding Arc (GA) reactor and the Dielectric Barrier Discharge (DBD) reactor. In his experiments the GA reactor in particular appeared to be the most suited to producing nitrogen oxides. In this reactor, under atmospheric pressure, a plasma-front (a kind of mini lightning bolt) glides between two diverging metal surfaces, starting with a small opening (2 mm) to a width of 5 centimeters. This expansion causes the plasma to cool to room temperature. During the trajectory of the 'lightning', the nitrogen (N2) and oxygen (O2) molecules react in the immediate vicinity of the lightning front to nitrogen oxides (NO and NO2). 

Continue reading at Eindhoven University of Technology

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network