Researchers Find a Surprise Just Beneath the Surface in Carbon Dioxide Experiment

Typography

In a classic tale of science taking twists and turns before coming to a conclusion, two teams of researchers—one a group of theorists and the other, experimentalists—have worked together to solve a chemical puzzle that may one day lead to cleaner air and renewable fuel. The scientists' ultimate goal is to convert harmful carbon dioxide (CO2) in the atmosphere into beneficial liquid fuel. Currently, it is possible to make fuels out of CO2—plants do it all the time—but researchers are still trying to crack the problem of artificially producing the fuels at large enough scales to be useful.

In a new study published the week of June 12 in the journal Proceedings of the National Academy of Sciences (PNAS), researchers report the mechanics behind an early key step in artificially activating CO2 so that it can rearrange itself to become the liquid fuel ethanol. Theorists at Caltech used quantum mechanics to predict what was happening at atomic scales, while experimentalists at the Department of Energy's (DOE) Lawrence Berkeley National Lab (Berkeley Lab) used X-ray studies to analyze the steps of the chemical reaction.

In a classic tale of science taking twists and turns before coming to a conclusion, two teams of researchers—one a group of theorists and the other, experimentalists—have worked together to solve a chemical puzzle that may one day lead to cleaner air and renewable fuel. The scientists' ultimate goal is to convert harmful carbon dioxide (CO2) in the atmosphere into beneficial liquid fuel. Currently, it is possible to make fuels out of CO2—plants do it all the time—but researchers are still trying to crack the problem of artificially producing the fuels at large enough scales to be useful.

In a new study published the week of June 12 in the journal Proceedings of the National Academy of Sciences (PNAS), researchers report the mechanics behind an early key step in artificially activating CO2 so that it can rearrange itself to become the liquid fuel ethanol. Theorists at Caltech used quantum mechanics to predict what was happening at atomic scales, while experimentalists at the Department of Energy's (DOE) Lawrence Berkeley National Lab (Berkeley Lab) used X-ray studies to analyze the steps of the chemical reaction.

The scientists are part of the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, whose goal is to convert CO2into high-value chemical products like liquid fuels. JCAP is led by Caltech in partnership with Berkeley Lab, the Stanford Linear Accelerator Center (SLAC), and UC campuses at San Diego and Irvine.

Continue reading at California Institute of Technology

Image: This false-color image, produced with scanning electron microscopy, shows microscopic details on the surface of a copper foil that was used as a catalyst in a chemical reaction studied at Berkeley Lab’s Advanced Light Source. The scale bar represents 50 microns, or millionths of a meter. Credit: Berkeley Lab