Deforestation in Amazon basin could disrupt the distant rainforest by remote climate connection

Typography

The ongoing deforestation around the fringes of the Amazon may have serious consequences for the untouched deeper parts of the rainforest. A new research study shows that it is not only the climate that is adversely affected by deforestation. In fact, the very stability of the ecosystem in the entire Amazon region is altered when deforestation takes place in the outermost regions.

It was previously known that, in the long term, the deforestation of the Amazon rainforest has a negative impact on the global climate due to greater carbon dioxide emissions released into the atmosphere. However, researchers from Lund University in Sweden and other institutions have now shown that deforestation could also disrupt the entire rainforest’s resilience, that is, its long-term ability to recover from environmental changes, and the ability to absorb carbon dioxide from the atmosphere.

The ongoing deforestation around the fringes of the Amazon may have serious consequences for the untouched deeper parts of the rainforest. A new research study shows that it is not only the climate that is adversely affected by deforestation. In fact, the very stability of the ecosystem in the entire Amazon region is altered when deforestation takes place in the outermost regions.

It was previously known that, in the long term, the deforestation of the Amazon rainforest has a negative impact on the global climate due to greater carbon dioxide emissions released into the atmosphere. However, researchers from Lund University in Sweden and other institutions have now shown that deforestation could also disrupt the entire rainforest’s resilience, that is, its long-term ability to recover from environmental changes, and the ability to absorb carbon dioxide from the atmosphere.

“Unlike most previous studies on land use that have focused solely on climate change impacts, the current study also accessed the land use impacts on the ecosystem”, says Minchao Wu, doctoral student in physical geography at Lund University.

In their study, the researchers used a high-resolution regional earth system model developed at Lund University. Previous studies in the field have used a relatively coarse resolution in their computer simulations, without the possibility of incorporating a detailed level of vegetation dynamics. Therefore, according to the researchers, it has so far been difficult to pinpoint the effects, but the new-generation regional earth system models now enable such an impact study to be performed.

Continue reading at Lund University

Image Credits: lubasi via Wikimedia Commons