From: University of Oxford
Published August 15, 2017 01:54 PM

A new method of 3D printing living tissues

The approach could revolutionise regenerative medicine, enabling the production of complex tissues and cartilage that would potentially support, repair or augment diseased and damaged areas of the body.

Printing high-resolution living tissues is hard to do, as the cells often move within printed structures and can collapse on themselves. But, led by Professor Hagan Bayley, Professor of Chemical Biology in Oxford’s Department of Chemistry, the team devised a way to produce tissues in self-contained cells that support the structures to keep their shape.

The cells were contained within protective nanolitre droplets wrapped in a lipid coating that could be assembled, layer-by-layer, into living structures. Producing printed tissues in this way improves the survival rate of the individual cells, and allowed the team to improve on current techniques by building each tissue one drop at a time to a more favourable resolution.

To be useful, artificial tissues need to be able to mimic the behaviours and functions of the human body. The method enables the fabrication of patterned cellular constructs, which, once fully grown, mimic or potentially enhance natural tissues.

Continue reading at University of Oxford

Terms of Use | Privacy Policy

2017©. Copyright Environmental News Network