Frogs That Adapt to Pesticides Are More Vulnerable to Parasites

Typography

Amphibians can evolve increased tolerance to pesticides, but the adaptation can make them more susceptible to parasites, according to a team that includes researchers at Rensselaer Polytechnic Institute. The research, led by Binghamton University, showed that wood frogs that evolved increased tolerance to pesticides showed greater susceptibility to a dangerous virus, although they also demonstrated reduced susceptibility to a parasitic worm.

“We have only recently begun to understand that amphibians can rapidly evolve tolerance to chemicals like pesticides, which on the surface is good news,” said Rick Relyea, a professor of biological sciences and director of the Darrin Fresh Water Institute at Rensselaer. “But now comes the bad news: with that tolerance there is a tradeoff, which is that they become more susceptible to parasites that, in the case of ranavirus, can wipe out entire amphibian populations.”

Amphibians can evolve increased tolerance to pesticides, but the adaptation can make them more susceptible to parasites, according to a team that includes researchers at Rensselaer Polytechnic Institute. The research, led by Binghamton University, showed that wood frogs that evolved increased tolerance to pesticides showed greater susceptibility to a dangerous virus, although they also demonstrated reduced susceptibility to a parasitic worm.

“We have only recently begun to understand that amphibians can rapidly evolve tolerance to chemicals like pesticides, which on the surface is good news,” said Rick Relyea, a professor of biological sciences and director of the Darrin Fresh Water Institute at Rensselaer. “But now comes the bad news: with that tolerance there is a tradeoff, which is that they become more susceptible to parasites that, in the case of ranavirus, can wipe out entire amphibian populations.”

Previous research, led by Jessica Hua, a Binghamton University assistant professor, with the assistance of researchers at Rensselaer and Purdue University, showed that amphibians can evolve tolerance to pesticides in one of two ways. Amphibians that live close to agriculture can evolve higher baseline tolerance by passing tolerance on from generation to generation. Alternatively, if exposed to low levels of pesticides early in life, amphibians that live far from agriculture evolve the ability to induce higher pesticide tolerance within a few days, which is known as “inducible tolerance.”

Continue reading at Rensselaer Polytechnic Institute

Image: Brian Gratwicke via Wikimedia Commons