Print No Evil: Three-Layer Technique Helps Secure Additive Manufacturing

Typography

Additive manufacturing, also known as 3-D printing, is replacing conventional fabrication processes in critical areas ranging from aerospace components to medical implants. But because the process relies on software to control the 3-D printer, additive manufacturing could become a target for malicious attacks – as well as for unscrupulous operators who may cut corners.

Additive manufacturing, also known as 3-D printing, is replacing conventional fabrication processes in critical areas ranging from aerospace components to medical implants. But because the process relies on software to control the 3-D printer, additive manufacturing could become a target for malicious attacks – as well as for unscrupulous operators who may cut corners.

Researchers from the Georgia Institute of Technology and Rutgers University have developed a three-layer system to verify that components produced using additive manufacturing have not been compromised. Their system uses acoustic and other physical techniques to confirm that the printer is operating as expected, and nondestructive inspection techniques to verify the correct location of tiny gold nanorods buried in the parts. The validation technique is independent of printer firmware and software in the controlling computer.

The verification and intrusion detection research will be described August 18 at the 26th USENIX Security Symposium in Vancouver, British Columbia. The two institutions recently received a grant from the National Science Foundation to further develop the process described at the symposium.

Read more at Georgia Institute of Technology

Image Credit: Christopher Moore, Georgia Tech