NASA Satellite Tracks Ozone Pollution by Monitoring Its Key Ingredients

Typography

Ozone pollution near Earth's surface is one of the main ingredients of summertime smog. It is also not directly measurable from space due to the abundance of ozone higher in the atmosphere, which obscures measurements of surface ozone. New NASA-funded research has devised a way to use satellite measurements of the precursor gases that contribute to ozone formation to differentiate among three different sets of conditions that lead to its production. These observations may also assist air quality managers in assessing the most effective approaches to emission reduction programs that will improve air quality.

Unlike its presence at high altitude where ozone acts as Earth's sunscreen from harmful ultraviolet radiation, at low altitudes, ozone is a health hazard contributing to respiratory problems like asthma and bronchitis. It is formed through complex chemical reactions initiated by sunlight and involving two types of gases, volatile organic compounds (VOC) and nitrogen oxides (NOx). Both are represented in the study by a major gas of each type, the VOC formaldehyde and NO2, that are measureable from space by the Dutch-Finnish Ozone Monitoring Instrument aboard NASA's Aura satellite, launched in 2004.

 

"We're using satellite data to analyze the chemistry of ozone from space," said lead author Xiaomeng Jin at the Lamont-Doherty Earth Observatory at Columbia University in Palisades, New York. Their research was published in Journal of Geophysical Research: Atmospheres, a publication of the American Geophysical Union.

Continue reading at NASA.

Image Source:  NASA’s Earth Observatory /Josh Stevens