New Study Ranks Hazardous Asteroid Effects from Least to Most Destructive

Typography

If an asteroid struck Earth, which of its effects—scorching heat, flying debris, towering tsunamis—would claim the most lives? A new study has the answer: violent winds and shock waves are the most dangerous effects produced by Earth-impacting asteroids.

If an asteroid struck Earth, which of its effects—scorching heat, flying debris, towering tsunamis—would claim the most lives? A new study has the answer: violent winds and shock waves are the most dangerous effects produced by Earth-impacting asteroids.

The study explored seven effects associated with asteroid impacts—heat, pressure shock waves, flying debris, tsunamis, wind blasts, seismic shaking and cratering—and estimated their lethality for varying sizes. The researchers then ranked the effects from most to least deadly, or how many lives were lost to each effect.

Overall, wind blasts and shock waves were likely to claim the most casualties, according to the study. In experimental scenarios, these two effects accounted for more than 60 percent of lives lost. Shock waves arise from a spike in atmospheric pressure and can rupture internal organs, while wind blasts carry enough power to hurl human bodies and flatten forests.

“This is the first study that looks at all seven impact effects generated by hazardous asteroids and estimates which are, in terms of human loss, most severe,” said Clemens Rumpf, a senior research assistant at the University of Southampton in the United Kingdom, and lead author of the new study published in Geophysical Research Letters, a journal of the American Geophysical Union.

Read more at American Geophysical Union

Image: The trace left in the sky by the meteor that broke up over Chelyabinsk, Russia, in 2013. A new study explored seven effects associated with asteroid impacts — heat, pressure shock waves, flying debris, tsunamis, wind blasts, seismic shaking and cratering — and estimated their lethality for varying sizes. (Credit: Alex Alishevskikh)